题目列表(包括答案和解析)
第二部分 牛顿运动定律
第一讲 牛顿三定律
一、牛顿第一定律
1、定律。惯性的量度
2、观念意义,突破“初态困惑”
二、牛顿第二定律
1、定律
2、理解要点
a、矢量性
b、独立作用性:ΣF → a ,ΣFx → ax …
c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。
3、适用条件
a、宏观、低速
b、惯性系
对于非惯性系的定律修正——引入惯性力、参与受力分析
三、牛顿第三定律
1、定律
2、理解要点
a、同性质(但不同物体)
b、等时效(同增同减)
c、无条件(与运动状态、空间选择无关)
第二讲 牛顿定律的应用
一、牛顿第一、第二定律的应用
单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。
应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。
![]()
1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中( )
A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动
B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力
C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点
D、工件在皮带上有可能不存在与皮带相对静止的状态
解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。
较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t → 0 ,a → ∞ ,则ΣFx → ∞ ,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)
此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出
只有当L >
时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,试求工件到达皮带右端的时间t(过程略,答案为5.5s)
![]()
进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0 ,其它条件不变,再求t(学生分以下三组进行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:
① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?
② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?
解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。
第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。
![]()
答案:0 ;g 。
二、牛顿第二定律的应用
应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。
在难度方面,“瞬时性”问题相对较大。
1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。
![]()
解说:受力分析 → 根据“矢量性”定合力方向 → 牛顿第二定律应用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)
进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)
进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。
![]()
解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。
分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则
θ=(90°+ α)- β= 90°-(β-α) (1)
对灰色三角形用正弦定理,有
=
(2)
解(1)(2)两式得:ΣF = ![]()
最后运用牛顿第二定律即可求小球加速度(即小车加速度)
![]()
答:
。
2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。
解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。
正交坐标的选择,视解题方便程度而定。
![]()
解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上两式成为
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ + ma cosθ
解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。
根据独立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
显然,独立解T值是成功的。结果与解法一相同。
![]()
答案:mgsinθ + ma cosθ
思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N = mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m
。)
学生活动:用正交分解法解本节第2题“进阶练习2”
![]()
进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。
解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。
![]()
答:208N 。
3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。
解说:第一步,阐明绳子弹力和弹簧弹力的区别。
(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?
![]()
结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。
第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。
知识点,牛顿第二定律的瞬时性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?
解:略。
答:2g ;0 。
三、牛顿第二、第三定律的应用
要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。
在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。
对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。
补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——
Σ
= m1
+ m2
+ m3
+ … + mn![]()
其中Σ
只能是系统外力的矢量和,等式右边也是矢量相加。
![]()
1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?
解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。
答案:N =
x 。
思考:如果水平面粗糙,结论又如何?
解:分两种情况,(1)能拉动;(2)不能拉动。
第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。
第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μ
Mg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。
答:若棒仍能被拉动,结论不变。
若棒不能被拉动,且F = μ
Mg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N =
〔x -〈L-l〉〕。
![]()
应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
![]()
思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?
解:略。
答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。
2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?
解说:
![]()
此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。
答案:F =
。
![]()
思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。
解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:
= m2a
隔离m1 ,仍有:T = m1a
解以上两式,可得:a =
g
最后用整体法解F即可。
![]()
答:当m1 ≤ m2时,没有适应题意的F′;当m1 > m2时,适应题意的F′=
。
3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?
解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。
法二,“新整体法”。
据Σ
= m1
+ m2
+ m3
+ … + mn
,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:
g 。
四、特殊的连接体
![]()
当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。
解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、
1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。
![]()
解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。
(学生活动)定型判断斜面的运动情况、滑块的运动情况。
位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。
(学生活动)这两个加速度矢量有什么关系?
沿斜面方向、垂直斜面方向建x 、y坐标,可得:
![]()
a1y = a2y ①
且:a1y = a2sinθ ②
隔离滑块和斜面,受力图如图20所示。
对滑块,列y方向隔离方程,有:
mgcosθ- N = ma1y ③
对斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 =
。
(学生活动)思考:如何求a1的值?
解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后据a1 =
求a1 。
答:a1 =
。
2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。
![]()
![]()
解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。
(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)
定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:
S1x + b = S cosθ ①
![]()
设全程时间为t ,则有:
S =
at2 ②
S1x =
a1xt2 ③
而隔离滑套,受力图如图23所示,显然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t = ![]()
![]()
另解:如果引进动力学在非惯性系中的修正式 Σ
+
* = m
(注:
*为惯性力),此题极简单。过程如下——
以棒为参照,隔离滑套,分析受力,如图24所示。
注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒为参照,滑套的相对位移S相就是b ,即:
b = S相 =
a相 t2 (3)
解(1)(2)(3)式就可以了。
第二讲 配套例题选讲
教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。
例题选讲针对“教材”第三章的部分例题和习题。
| U/V | 0.40 | 0.80 | 1.20 | 1.60 | 2.00 | 2.40 | 2.80 |
| I/A | 0.10 | 0.16 | 0.20 | 0.23 | 0.25 | 0.26 | 0.27 |
(03年江苏卷)(13分)图1所示为一根竖直悬挂的不可伸长的轻绳,下端栓一小物块A,上端固定在C点且与一能测量绳的拉力的测力传感器相连。已知有一质量为m0的子弹B沿水平方向以速度v0射入A内(未穿透),接着两者一起绕C点在竖直面内做圆周运动。在各种阻力都可忽略的条件下测力传感器测得绳的拉力F随时间t的变化关系如图2所示。已知子弹射入的时间极短,且图2中t=0为A、B开始以相同速度运动的时刻。根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A的质量)及A、B一起运动过程中的守恒量,你能求得哪些定量的结果?
![]()
我国的“嫦娥奔月”月球探测工程已经启动,分“绕、落、回”三个发展阶段:在2007年已经发射了一颗围绕月球飞行的“嫦娥一号”卫星,将在2012年前后发射一颗月球软着陆器,在2017年前后发射一颗返回式月球软着陆器,进行首次月球样品自动取样并安全返回地球.设想着陆器完成了对月球表面的考察任务后,由月球表面回到围绕月球做圆周运动的轨道舱,如图19所示.为了安全,返回的着陆器与轨道舱对接时,必须具有相同的速度。设返回的着陆器质量为m,月球表面的重力加速度为g,月球的半径为R,月球的自转周期为T,轨道舱到月球中心的距离为r,已知着陆器从月球表面返回轨道舱的过程中需克服月球引力做功
,不计月球表面大气对着陆器的阻力和月球自转的影响,则
(1)着陆器与返回舱对接时的速度大小是多少?
(2)在月球表面的着陆器至少需要获得多少能量才能返回轨道舱?
![]()
(08年茂名市二模)(5分,选修物理3-4) 如图13所示为某一简谐横波在t=0时刻的波形图,由此可知该波沿 传播,该时刻a、b、c三点速度最大的是 点,加速度最大的是 点,从这时刻开始,第一次最快回到平衡位置的是 点。若t=0.02s时质点c第一次到达波谷处,则此波的波速为 m/s。
![]()
一、选择题(本题共10小题,每题4分,共40分)
1.解析:当θ较小时物块与木板间的摩擦力为静摩擦力,摩擦力大小与物块重力沿板方向的分力大小相等,其大小为:
,按正弦规律变化;当θ较大时物块与木板间的摩擦力为滑动摩擦力,摩擦力大小为:
,按余弦规律变化,故选B.答案:B
2.解析:物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种状态推到无限小,即细绳与竖直方向的夹角为零;由平衡条件可知
时,
,
,所以物体缓慢下降过程中,F逐渐减小,Ff逐渐减小。故选D。
3.
解析: 由于二者间的电场力是作用力与反用力,若以
B为研究对象,绝缘手柄对B球的作用力未知,陷入困境,
因此以A为研究对象。设A带电量为q,B带电量为Q,
AB间距离为a,OB间距离为h ,由库仑定律得
,由三角形OAB得
,以B球为研究对象,
受力如图3所示,由平衡条件得
,由以上三式
得
,
所以
,故正确选项为D。
4.
解析:设两三角形滑块的质量均为m,对整体有:%20各种性质的力和物体的平衡.files/image192.gif)
滑块B受力如图所示,则对B有:
,%20各种性质的力和物体的平衡.files/image196.gif)
可解得: %20各种性质的力和物体的平衡.files/image135.gif)
5.解析:在增加重力时,不知哪根绳子先断.故我们选择O点为研究对象,先假设OA不会被拉断,OB绳上的拉力先达最大值,则:
,由拉密定理得:
%20各种性质的力和物体的平衡.files/image201.gif)
解得:
,OA将被拉断.前面假设不成立.
再假设OA绳子拉力先达最大值,
,此时,由拉密定理得:
%20各种性质的力和物体的平衡.files/image207.gif)
解得:
,故OB将不会断.
此时,
,故悬挂重物的重力最多只能为
,所以C正确,答案C。
6.解析:物体受力平衡时,无论如何建立直角坐标系,两个方向上的合力均为零。若以OA和垂直于OA方向建立坐标系,可以看出该力沿F1方向,A物体不能平衡;以水平和竖直方向建立坐标系,F4不能平衡。因此选BC,答案:BC
7.解析:由平衡知识可得,绳中拉力FT的大小不变,总等于物A的重力;假设汽车在滑轮的正下方,则绳中拉力FT的水平分量为零,此时汽车对地面的压力FN最小,汽车受到的水平向右的的摩擦力Ff为零;当汽车距滑轮下方为无穷远处时,绳中拉力FT的竖直分量为零,汽车对地面的压力FN最大,汽车受到的水平向右的的摩擦力Ff最大,故选B.答案:B
8.解析:本题“滤速器”即速度选择器,工作条件是电场力与洛仑兹力平衡,即qvB=qE,所以v=E/B。显然“滤速器”只滤“速”,与粒子电性无关,故可假设粒子电性为正,若a板电势较高,则电场力方向指向b板,洛仑兹力应指向a板方可满足条件,由左手定则可得选项A是正确的;若a板电势较低,同理可得选项D是正确的。答案:AD。
9.解析:若AB逆时针旋转,则A对皮带的静摩擦力向左、B对皮带的静摩擦力向右才能将上方皮带拉紧,因此皮带相对A轮有向右运动趋势,A为从动轮,B正确;同理,D项正确。答案:BD。
10.D解析:对物体受力分析,作出力的矢量三角形,就可解答。
二、填空和实验题
11.Mg 将第2、3块砖看成一个整体。由于对称性,第1、4块砖对2、3整体的摩擦力必定相同,且二者之和等于2、3整体的重力。所以第2与第1块砖的摩擦力大小为mg。
12.微粒在重力、电场力和洛仑兹力作用下处于平衡状态,受力分析如图,可知,
%20各种性质的力和物体的平衡.files/image217.gif)
得电场强度
,磁感应强度%20各种性质的力和物体的平衡.files/image221.gif)
13.探究一个规律不应该只用特殊的来代替一般。所以本实验中两个分力的大小应不相等,所以橡皮条也就不在两绳夹角的平分线上,而两绳的长度可以不等。所以A、B不对。实验要求作用的效果要相同,因此O点的位置不能变动。因此D不对。实验中合力的大小应是量出来而不是算出来的,所以F不对。答案:C。
14.(1)因纸质量较小,两者间摩擦力也小,不易测量。纸贴在木板上,可增大正压力,从而增大滑动摩擦力,便于测量。
(2)①参考方案:只要将测力计的一端与木块A相连接,测力计的另一端与墙壁或竖直挡板之类的固定物相连.用手通过轻绳拉动木板B,读出并记下测力计的读数F,测出木块A的质量m.
②%20各种性质的力和物体的平衡.files/image223.gif)
③弹簧测力计
三、计算题
15.解:当水平拉力F=0时,轻绳处于竖直位置时,绳子张力最小T1=G
当水平拉力F=%20各种性质的力和物体的平衡.files/image226.gif)
因此轻绳的张力范围是G≤≤%20各种性质的力和物体的平衡.files/image228.gif)
(2)设在某位置球处于平衡位置由平衡条件得%20各种性质的力和物体的平衡.files/image229.gif)
所以
即
,得图象如图所示。
16.解析:(1)当S接1时,棒刚好静止,则MN所受的安培力方向竖直向上,由左手定则可知,磁场的方向垂直纸面向里。
(2)设导轨的间距为L,MN棒的的质量为m。当S接1时,导体棒刚好静止,则
mg=
设最终稳定时MN的速率为v,则
BI’L=mg 而
解得:
m2/s
17.解析: 因为环2的半径为环3的2倍,环2的周长为环3的2倍,三环又是用同种金属丝制成的,所以环2的质量为环3的2倍。设m为环3的质量,那么三根绳承担的力为3mg,于是,环1与环3之间每根绳的张力FT1=mg。没有摩擦,绳的重量不计,故每根绳子沿其整个长度上的张力是相同的(如图所示)FT1= FT2=mg。
对环3,平衡时有:
由此%20各种性质的力和物体的平衡.files/image251.gif)
环2中心与环3中心之距离:
,
即%20各种性质的力和物体的平衡.files/image255.gif)
18.解析:热钢板靠滚子的摩擦力进入滚子之间,根据摩擦力和压力的关系,便可推知钢板的厚度
以钢板和滚子接触的部分为研究对象,其受力情况如图所示,钢板能进入滚子之间,则在水平方向有:
(式中
),所以由两式可得:μ≥tanθ
设滚子的半径为R,再由图中的几何关系可得
,将此式代入得b≤(d+a)-
代入数据得b≤
即钢板在滚子间匀速移动时,钢板进入流子前厚度的最大值为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com