题目列表(包括答案和解析)
(选修3-5试题) (12分)
⑴(4分)下列说法正确的是 ▲
A.原子核内部某个中子转变为质子和电子,产生的电子从原子核中发射出来,这就是β衰变
B.比结合能小的原子核结合成或分解成比结合能大的原子核时一定吸收核能
C.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动速度减小。
D.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切物体都具有波粒二象性。
⑵(4分))现用下列几种能量的光子的光照射处于
基态的氢原子,A:10.25eV、B:12.09eV、C:12.45eV,则能被氢原子吸收的光子是 ▲ (填序号),氢原子吸收该光子后可能产生 ▲ 种频率的光子.氢原子能级图为:
⑶ (4分) 如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点计时器的纸带,当甲车受到水平向右的瞬时冲量时,随即启动打点计时器,甲车运动一
段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两车运动情况如图(b)所示,电源频率为50Hz,求:甲、乙两车的质量比m甲:m乙
![]()
选做题(请从A、B和C三小题中选定两小题作答,并在答题纸上把所选题目对应字母后的方框涂满涂黑.如都作答则按A、B两小题评分)
A.(选修模块3—3) (12分)
⑴有以下说法,其中正确的是 .
A.在两分子间距离增大的过程中,分子间的作用力减小
B.布朗运动反映了花粉小颗粒内部分子的无规则运动
C.晶体一定具有规则形状,且有各向异性的特征
D.温度、压力、电磁作用等可以改变液晶的光学性质
⑵一定质量的理想气体从状态A(p1、V1)开始做等压膨胀变化到
状态B(p1、V2),状态变化如图中实线所示.此过程中气体对外做的功为 ▲ ,气体分
子的平均动能 ▲ (选填“增大”“减小”或“不变”), 气体 ▲ (选填“吸收”或“放出”)
热量.
⑶已知地球的半径R,地球表面的重力加速度g,大气压强p0,空气的平均摩尔质量为M,
阿伏加德罗常数NA.请结合所提供的物理量估算出地球周围大气层空气的分子数.
B.(选修模块3—4) (12分)
⑴下列说法正确的是 ▲
A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。
B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调
C.当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。
D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆
静止时的长度小
⑵如图所示,为黄光、蓝光分别通过同一干涉装置形成的干涉条纹中心部
分。则图甲为 ▲ 产生的干涉条纹(选填“黄光”或“蓝光”).若将两
种颜色的光以同样的入射角入射到两种物质的介面上,图甲对应的色
光发生了全反射,则图乙对应的色光 ▲ (选填“一定”、“可能”或“不
可能”)发生全反射.
⑶图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.3s时刻的波形图,x=1.2m处的质点在t=0.3s时刻向y轴正方向运动。
求:
①波的传播方向和周期;
②波的传播波速
C. (选修3-5试题) (12分)
⑴(4分)下列说法正确的是 ▲
A.原子核内部某个中子转变为质子和电子,产生的电子从原子核中发射出来,这就是β衰变
B.比结合能小的原子核结合成或分解成比结合能大的原子核时一定吸收核能
C.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动速度减小。
D.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切物体都具有波粒二象性。
⑵(4分))现用下列几种能量的光子的光照射处于
基态的氢原子,A:10.25eV、B:12.09eV、C:
12.45eV,则能被氢原子吸收的光子是 ▲ (填
序号),氢原子吸收该光子后可能产生 ▲ 种
频率的光子.氢原子能级图为:
⑶ (4分) 如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点
计时器的纸带,当甲车受到水平向右的瞬时冲量时,随即启动打点计时器,甲车运动一
段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两
车运动情况如图(b)所示,电源频率为50Hz,求:甲、乙两车的质量比m甲:m乙
![]()
选做题(请从A、B和C三小题中选定两小题作答,并在答题纸上把所选题目对应字母后的方框涂满涂黑.如都作答则按A、B两小题评分)
A.(选修模块3—3) (12分)
⑴有以下说法,其中正确的是 .
A.在两分子间距离增大的过程中,分子间的作用力减小
B.布朗运动反映了花粉小颗粒内部分子的无规则运动
C.晶体一定具有规则形状,且有各向异性的特征
D.温度、压力、电磁作用等可以改变液晶的光学性质
⑵一定质量的理想气体从状态A(p1、V1)开始做等压膨胀变化到
状态B(p1、V2),状态变化如图中实线所示.此过程中气体对外做的功为 ▲ ,气体分
子的平均动能 ▲ (选填“增大”“减小”或“不变”), 气体 ▲ (选填“吸收”或“放出”)
热量.
⑶已知地球的半径R,地球表面的重力加速度g,大气压强p0,空气的平均摩尔质量为M,
阿伏加德罗常数NA.请结合所提供的物理量估算出地球周围大气层空气的分子数.
B.(选修模块3—4) (12分)
⑴下列说法正确的是 ▲
A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。
B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调
C.当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。
D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆
静止时的长度小
⑵如图所示,为黄光、蓝光分别通过同一干涉装置形成的干涉条纹中心部
分。则图甲为 ▲ 产生的干涉条纹(选填“黄光”或“蓝光”).若将两
种颜色的光以同样的入射角入射到两种物质的介面上,图甲对应的色
光发生了全反射,则图乙对应的色光 ▲ (选填“一定”、“可能”或“不
可能”)发生全反射.
⑶图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.3s时刻的波形图,x=1.2m处的质点在t=0.3s时刻向y轴正方向运动。
求:
①波的传播方向和周期;
②波的传播波速
C. (选修3-5试题) (12分)
⑴(4分)下列说法正确的是 ▲
A.原子核内部某个中子转变为质子和电子,产生的电子从原子核中发射出来,这就是β衰变
B.比结合能小的原子核结合成或分解成比结合能大的原子核时一定吸收核能
C.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动速度减小。
D.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切物体都具有波粒二象性。
⑵(4分))现用下列几种能量的光子的光照射处于
基态的氢原子,A:10.25eV、B:12.09eV、C:
12.45eV,则能被氢原子吸收的光子是 ▲ (填
序号),氢原子吸收该光子后可能产生 ▲ 种
频率的光子.氢原子能级图为:
⑶ (4分) 如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点
计时器的纸带,当甲车受到水平向右的瞬时冲量时,随即启动打点计时器,甲车运动一
段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两
车运动情况如图(b)所示,电源频率为50Hz,求:甲、乙两车的质量比m甲:m乙
![]()
一、选择题
1、B 2、C 3、AC 4、D 5、BC 6BC
7、A 解析:由题意知,地面对物块A的摩擦力为0,对物块B的摩擦力为
。
对A、B整体,设共同运动的加速度为a,由牛顿第二定律有:
%20牛顿定律在直线运动中的应用.files/image288.gif)
对B物体,设A对B的作用力为
,同理有
%20牛顿定律在直线运动中的应用.files/image292.gif)
联立以上三式得:%20牛顿定律在直线运动中的应用.files/image294.gif)
8、B 9、A 10、B
二、实验题
11、⑴ 不变 ⑵ AD ⑶ABC ⑷某学生的质量
三、计算题
12、解析:由牛顿第二定律得:mg-f=ma
%20牛顿定律在直线运动中的应用.files/image296.gif)
抛物后减速下降有:%20牛顿定律在直线运动中的应用.files/image298.gif)
Δv=a/Δt
解得:%20牛顿定律在直线运动中的应用.files/image300.gif)
13、解析:人相对木板奔跑时,设人的质量为
,加速度为
,木板的质量为M,加速度大小为
,人与木板间的摩擦力为
,根据牛顿第二定律,对人有:
;
(2)设人从木板左端开始距到右端的时间为
,对木板受力分析可知:
故
,方向向左;
由几何关系得:
,代入数据得:%20牛顿定律在直线运动中的应用.files/image320.gif)
(3)当人奔跑至右端时,人的速度
,木板的速度
;人抱住木柱的过程中,系统所受的合外力远小于相互作用的内力,满足动量守恒条件,有:
(其中
为二者共同速度)
代入数据得
,方向与人原来运动方向一致;
以后二者以
为初速度向右作减速滑动,其加速度大小为
,故木板滑行的距离为
。
14. 解析:(1)从图中可以看出,在t=2s内运动员做匀加速直线运动,其加速度大小为
=
设此过程中运动员受到的阻力大小为f,根据牛顿第二定律,有mg-f=ma
得 f=m(g-a)=80×(10-8)N=160N
(2)从图中估算得出运动员在14s内下落了
39.5×2×
根据动能定理,有%20牛顿定律在直线运动中的应用.files/image339.gif)
所以有
=(80×10×158-
×80×62)J≈1.25×105J
(3)14s后运动员做匀速运动的时间为
s=57s
运动员从飞机上跳下到着地需要的总时间
t总=t+t′=(14+57)s=71s
15. 13、解析:(1)取竖直向下的方向为正方向。
球与管第一次碰地前瞬间速度
,方向向下。
碰地的瞬间管的速度
,方向向上;球的速度
,方向向下,
球相对于管的速度
,方向向下。
碰后,管受重力及向下的摩擦力,加速度a管=
球受重力及向上的摩擦力,加速度a球=
球相对管的加速度a相=
取管为参照物,则球与管相对静止前,球相对管下滑的距离为:
%20牛顿定律在直线运动中的应用.files/image355.gif)
要满足球不滑出圆管,则有
。
(2)设管从碰地到它弹到最高点所需时间为t1(设球与管在这段时间内摩擦力方向不变),则:%20牛顿定律在直线运动中的应用.files/image359.gif)
设管从碰地到与球相对静止所需时间为t2,%20牛顿定律在直线运动中的应用.files/image361.gif)
因为t1 >t2,说明球与管先达到相对静止,再以共同速度上升至最高点,设球与管达到相对静止时离地高度为h’,两者共同速度为v’,分别为:
%20牛顿定律在直线运动中的应用.files/image363.gif)
%20牛顿定律在直线运动中的应用.files/image365.gif)
然后球与管再以共同速度v’作竖直上抛运动,再上升高度h’’为
%20牛顿定律在直线运动中的应用.files/image367.gif)
因此,管上升最大高度H’=h’+h’’=%20牛顿定律在直线运动中的应用.files/image369.gif)
(3)当球与管第二次共同下落时,离地高为
,球位于距管顶
处,同题(1)可解得在第二次反弹中发生的相对位移。
16. 解析:(1)小球最后静止在水平地面上,在整个运动过程中,空气阻力做功使其机械能减少,设小球从开始抛出到最后静止所通过的路程S,有 fs=mv02/2 已知 f =0.6mg 代入算得: s= 5
v02/(
(2)第一次上升和下降:设上升的加速度为a11.上升所用的时间为t11,上升的最大高度为h1;下降的加速度为a12,下降所用时间为t12.
上升阶段:F合=mg+f =1.6 mg
由牛顿第二定律:a11 =
根据:vt=v0-a11t11, vt=0
得:v0=l.6gt11, 所以t11= 5 v0/(
下降阶段:a12=(mg-f)/m=
由h1= a11t112/2 和 h2= a12t122/2 得:t12=2t11=5 v0/(
所以上升和下降所用的总时间为:T1=t11+t12=3t11= 15 v0/(
第二次上升和下降,以后每次上升的加速度都为a11,下降的加速度都为a12;设上升的初速度为v2,上升的最大高度为h2,上升所用时间为t21,下降所用时间为t22
由v22=
上升阶段:v2=a11t21 得:t21= v2/
a11= 5 v0/(
下降阶段: 由 h2= a11t212/2 和h2= a12t222/2 得t22=2t21
所以第二次上升和下降所用总时间为:T2=t21+t22=3t21=15 v0/(
第三次上升和下降,设上升的初速度为v3,上升的最大高度为h3,上升所用时间为t31,下降所用时间为t32
由 v32=
上升阶段:v3=a11t
下降阶段:由 h3= a11t312/2 和h3= a12t322/2 得:t32=2t31
所以第三次上升和下降所用的总时间为:T3=t31+t32=3t31=15 v0/(
同理,第n次上升和下降所用的总时间为: Tn=
所以,从抛出到落地所用总时间为: T=15 v0/(
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com