A.mg B. C. D. 查看更多

 

题目列表(包括答案和解析)

       A.小球落地时动能等于mgH

       B.小球陷入泥中的过程中克服泥土阻力所做的功小于刚落到地面时的动能

       C.整个过程中小球克服阻力做的功等于mg(H+h)

       D.小球在泥土中受到的平均阻力为

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

.地面上有一质量为M的重物,用力F向上提它,力F变化而引起物体加速度变化的函数关系如图所示.则关于以下说法中错误的是(   )

A、当F小于图中A点值时,物体的重力Mg>F,物体不动

B、图中A点值即为物体的重力值

C、物体向上运动的加速度和力F成正比

D、图线延长和纵轴的交点B的数值等于物体在该地的重力

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

.地面上有一质量为M的重物,用力F向上提它,力F变化而引起物体加速度变化的函数关系如图所示.则关于以下说法中错误的是(   )

A、当F小于图中A点值时,物体的重力Mg>F,物体不动

B、图中A点值即为物体的重力值

C、物体向上运动的加速度和力F成正比

D、图线延长和纵轴的交点B的数值等于物体在该地的重力

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

如图a所示是一个处于竖直平面内的特殊运动轨道,OA是长为x1=2R的直轨道,AE是倾角为30°的斜轨道,它们与滑块的动摩擦因数都为μ=4/9,EDF是圆心在B点,半径为R的光滑圆弧,D点是最高点,ED圆弧上方有一个高度与滑块相近的光滑圆弧形挡板PQ,轨道上的A、E两点理想连接,使滑块经过这两点时不损失机械能,且AE⊥EB.可视为质点的滑块,质量为m,以v0的初速度从O点进入OA直轨道,滑块在OA轨道运动时,受到水平向右的动力作用,它的大小随滑块与O点的距离变化,如图b所示,图中F0=mg.滑块经A点滑上斜轨道,到达轨道最高点D时恰好对轨道和挡板都无压力,此时立刻撤除圆弧形挡板PQ.滑块经D点后能无碰撞地进入一个特殊的漏斗C,漏斗C能将滑块以进入时的速率反向弹出.求:
(1)滑块在D点时的速度大小;
(2)初速度v0的大小;
(3)滑块从漏斗C弹出后会再次经过D点吗?若会经过D点,求经多长时间再次到达D点,漏斗离F点的距离x2多大?若不会经过D点,请说明理由.

查看答案和解析>>

A、B、C三物块质量分别为M、m、m0,作如图所示的连结,绳子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计.若B随A一起沿水平桌面做匀速运动,则(  )?

查看答案和解析>>

一、选择题

1、B    2、C  3、AC    4、D    5、BC  6BC  

7、A  解析:由题意知,地面对物块A的摩擦力为0,对物块B的摩擦力为

对A、B整体,设共同运动的加速度为a,由牛顿第二定律有:

对B物体,设A对B的作用力为,同理有

联立以上三式得:

 8、B    9、A       10、B

二、实验题

11、⑴ 不变    ⑵ AD  ⑶ABC  ⑷某学生的质量

三、计算题

12、解析:由牛顿第二定律得:mg-f=ma

                         

    抛物后减速下降有:

                          Δv=a/Δt

                    解得:

 

13、解析:人相对木板奔跑时,设人的质量为,加速度为,木板的质量为M,加速度大小为,人与木板间的摩擦力为,根据牛顿第二定律,对人有:

(2)设人从木板左端开始距到右端的时间为,对木板受力分析可知:,方向向左;

由几何关系得:,代入数据得:

(3)当人奔跑至右端时,人的速度,木板的速度;人抱住木柱的过程中,系统所受的合外力远小于相互作用的内力,满足动量守恒条件,有:

 (其中为二者共同速度)

代入数据得,方向与人原来运动方向一致;

以后二者以为初速度向右作减速滑动,其加速度大小为,故木板滑行的距离为

  

14. 解析:(1)从图中可以看出,在t=2s内运动员做匀加速直线运动,其加速度大小为

 =8m/s2

设此过程中运动员受到的阻力大小为f,根据牛顿第二定律,有mg-f=ma

得           f=m(g-a)=80×(10-8)N=160N

(2)从图中估算得出运动员在14s内下落了

                     39.5×2×2m158 m

根据动能定理,有

所以有    =(80×10×158-×80×62)J≈1.25×105J

(3)14s后运动员做匀速运动的时间为

              s=57s

运动员从飞机上跳下到着地需要的总时间

        t=t+t′=(14+57)s=71s

15. 13、解析:(1)取竖直向下的方向为正方向。

   球与管第一次碰地前瞬间速度,方向向下。

   碰地的瞬间管的速度,方向向上;球的速度,方向向下,

   球相对于管的速度,方向向下。

   碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

   球受重力及向上的摩擦力,加速度a=3g,方向向上,

球相对管的加速度a=5g,方向向上。

取管为参照物,则球与管相对静止前,球相对管下滑的距离为:

要满足球不滑出圆管,则有

(2)设管从碰地到它弹到最高点所需时间为t1(设球与管在这段时间内摩擦力方向不变),则:

设管从碰地到与球相对静止所需时间为t2

因为t1 >t2,说明球与管先达到相对静止,再以共同速度上升至最高点,设球与管达到相对静止时离地高度为h’,两者共同速度为v’,分别为:

然后球与管再以共同速度v’作竖直上抛运动,再上升高度h’’为

因此,管上升最大高度H’=h’+h’’=

(3)当球与管第二次共同下落时,离地高为,球位于距管顶处,同题(1)可解得在第二次反弹中发生的相对位移。

 

16. 解析:(1)小球最后静止在水平地面上,在整个运动过程中,空气阻力做功使其机械能减少,设小球从开始抛出到最后静止所通过的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

    (2)第一次上升和下降:设上升的加速度为a11.上升所用的时间为t11,上升的最大高度为h1;下降的加速度为a12,下降所用时间为t12

    上升阶段:F=mg+f =1.6 mg

    由牛顿第二定律:a11 =1.6g           

    根据:vt=v0-a11t11,  vt=0

    得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

    下降阶段:a12=(mg-f)/m= 0.4g          

    由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

    所以上升和下降所用的总时间为:T1=t11+t12=3t11=  15 v0/(8g)        

    第二次上升和下降,以后每次上升的加速度都为a11,下降的加速度都为a12;设上升的初速度为v2,上升的最大高度为h2,上升所用时间为t21,下降所用时间为t22

    由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

    上升阶段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

    下降阶段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

 所以第二次上升和下降所用总时间为:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

    第三次上升和下降,设上升的初速度为v3,上升的最大高度为h3,上升所用时间为t31,下降所用时间为t32

    由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

    上升阶段:v3=a11t3l,得t31= 5 v0/(32g)    

    下降阶段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

    所以第三次上升和下降所用的总时间为:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

    同理,第n次上升和下降所用的总时间为: Tn        

    所以,从抛出到落地所用总时间为: T=15 v0/(4g)

 


同步练习册答案