6.如图2所示.传送带以的初速度匀速运动.将质量为m的物体无初速度放在传送带上的A端.物体将被传送带带到B端.已知物体到达B端之间已和传送带相对静止.则下列说法正确的是( ) 查看更多

 

题目列表(包括答案和解析)

 如图2所示,传送带以的初速度匀速运动。将质量为m的物体无初速度放在传送带上的A端,物体将被传送带带到B端,已知物体到达B端之间已和传送带相对静止,则下列说法正确的是(    )

    A.传送带对物体做功为

    B.传送带克服摩擦做功

    C.电动机由于传送物体多消耗的能量为

    D.在传送物体过程产生的热量为

 

查看答案和解析>>

 如图2所示,传送带以的初速度匀速运动。将质量为m的物体无初速度放在传送带上的A端,物体将被传送带带到B端,已知物体到达B端之间已和传送带相对静止,则下列说法正确的是(     )

    A.传送带对物体做功为

    B.传送带克服摩擦做功

    C.电动机由于传送物体多消耗的能量为

    D.在传送物体过程产生的热量为

 

查看答案和解析>>

传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2
(1)求旅行包经过多长时间到达传送带的右端.
(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?

查看答案和解析>>

如图所示是长度为L=8.0m水平传送带,其皮带轮的直径为d=0.40m,传送带上部距地面的高度为h=0.80m。一个旅行包(视为质点)以v0=10m/s的初速度从左端滑上传送带。旅行包与皮带间的动摩擦因数μ=0.60。g取10m/s2。求:

(1)若传送带静止,旅行包滑到B端时,若没有人取包,旅行包将从B端滑落到地面上,则包的落地点距B端的水平距离为多少?

(2)当皮带轮顺时针匀速转动,其角速度为ω0=20 rad/s时,求旅行包在皮带上运动的时间与旅行包落地时的速度;

(3)设皮带轮以不同的角速度顺时针匀速转动,画出旅行包落地点距B端的水平距离s 随角速度ω变化的图象(ω的取值范围从0到100 rad/s)。

 

查看答案和解析>>

如图所示为某粮仓中由两台皮带传送机组成的传输装置示意图.设备调试时,将倾斜传送机的传送带与水平地面间调成倾角θ=37°,使水平传送机的转动轮边缘以5m/s的线速度沿顺时针方向匀速转动.A、B两端相距L=3m,C、D两端相距较远。现将质量m=10kg的一袋大米无初速的放在A端,它随传送带到大B端后,速度大小不变地传到倾斜传送带的C端,米袋与两传送带之间的动摩擦因数均为μ=0.5,最大静摩擦力大小与滑动摩擦力大小相等(已知g=10m/s2、sin37°=0.6、cos37°=0.8,传送机运动时传送带与转动轮之间无滑动).

【小题1】求米袋从A端运动到B端所用的时间;
【小题2】若倾斜传送带CD不运动,则米袋沿传送带CD所能上滑的最大距离是多少?
【小题3】将倾斜传送带开动使转动轮沿顺时针方向转动时发现,无论转动速度多大,米袋都无法运送到距C端较远的D端,试分析其原因。欲使米袋能运送到D端应怎样调试倾斜的传送带?

查看答案和解析>>

1.D   2.AD    3.BD    4.D    5.  C    6.AD    7.B    8.AD    9.AD  10.B

11.  100J     75J            12.  15N 

13. 解:设卡车运动的速度为v0,刹车后至停止运动,由动能定理:-μmgs=0-。得v==12m/s=43.2km/h。因为v0>v,所以该卡车违章了。

14. 解:当人向右匀速前进的过程中,绳子与竖直

方向的夹角由0°逐渐增大,人的拉力就发生了变化,

故无法用W=Fscosθ计算拉力所做的功,而在这个过

程中,人的拉力对物体做的功使物体的动能发生了变

化,故可以用动能定理来计算拉力做的功。

当人在滑轮的正下方时,物体的初速度为零,

当人水平向右匀速前进s 时物体的速度为v1 ,由图

1可知: v1= v0sina       

⑴根据动能定理,人的拉力对物体所做的功

W=m v12/2-0

⑵由⑴、⑵两式得W=ms2 v12/2(s2+h2)

15. 解:(1)对AB段应用动能定理:mgR+Wf=

所以:Wf=-mgR=-20×10-3×10×1=-0.11J

(2)对BC段应用动能定理:Wf=0-=-=-0.09J。又因Wf=μmgBCcos1800=-0.09,得:μ=0.153。

 

16. 解:在此过程中,B的重力势能的增量为,A、B动能增量为,恒力F所做的功为,用表示A克服摩擦力所做的功,根据功能关系有:

       解得:

17. 解:(1)儿童从A点滑到E点的过程中,重力做功W=mgh

儿童由静止开始滑下最后停在E点,在整个过程中克服摩擦力做功W1,由动能定理得,

=0,则克服摩擦力做功为W1=mgh

   (2)设斜槽AB与水平面的夹角为,儿童在斜槽上受重力mg、支持力N1和滑动摩擦

f1,儿童在水平槽上受重力mg、支持力N2和滑动摩擦力f2

,儿童从A点由静止滑下,最后停在E点.

由动能定理得,

解得,它与角无关.

   (3)儿童沿滑梯滑下的过程中,通过B点的速度最大,显然,倾角越大,通过B点的速度越大,设倾角为时有最大速度v,由动能定理得,

解得最大倾角

18. 解:(1)根据牛顿第二定律有:

设匀加速的末速度为,则有:

代入数值,联立解得:匀加速的时间为:

(2)当达到最大速度时,有:

解得:汽车的最大速度为:

(3)汽车匀加速运动的位移为:

在后一阶段牵引力对汽车做正功,重力和阻力做负功,根据动能定理有:

又有

代入数值,联立求解得:

所以汽车总的运动时间为:

 


同步练习册答案