题目列表(包括答案和解析)
阅读下面的文言文,完成下面5题。
李斯论 (清)姚鼐
苏子瞻谓李斯以荀卿之学乱天下,是不然。秦之乱天下之法,无待于李斯,斯亦未尝以其学事秦。
|
君子之仕也,进不隐贤;小人之仕也,无论所学识非也,即有学识甚当,见其君国行事,悖谬无义,疾首嚬蹙于私家之居,而矜夸导誉于朝庭之上,知其不义而劝为之者,谓天下将谅我之无可奈何于吾君,而不吾罪也;知其将丧国家而为之者,谓当吾身容可以免也。且夫小人虽明知世之将乱,而终不以易目前之富贵,而以富贵之谋,贻天下之乱,固有终身安享荣乐,祸遗后人,而彼宴然①无与者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之诛恶人,亦有时而信也邪!
且夫人有为善而受教于人者矣,未闻为恶而必受教于人者也。荀卿述先王而颂言儒效,虽间有得失,而大体得治世之要。而苏氏以李斯之害天下罪及于卿,不亦远乎?行其学而害秦者,商鞅也;舍其学而害秦者,李斯也。商君禁游宦,而李斯谏逐客②,其始之不同术也,而卒出于同者,岂其本志哉!宋之世,王介甫以平生所学,建熙宁新法,其后章惇、曾布、张商英、蔡京之伦,曷尝学介甫之学耶?而以介甫之政促亡宋,与李斯事颇相类。夫世言法术之学足亡人国,固也。吾谓人臣善探其君之隐,一以委曲变化从世好者,其为人尤可畏哉!尤可畏哉!
[注释]①宴然:安闲的样子。②谏逐客:秦始皇曾发布逐客令,驱逐六国来到秦国做官的人,李斯写了著名的《谏逐客书》,提出了反对意见。
对下列句子中加点的词语的解释,不正确的一项是( )
A.非是不足以中侈君张吾之宠 中:符合
B.灭三代法而尚督责 尚:崇尚
C.知其不义而劝为之者 劝:鼓励
D.而终不以易目前之富贵 易:交换
下列各组句子中,加点的词的意义和用法相同的一组是( )
A.因秦国地形便利 不如因普遇之
B.设所遭值非始皇、二世 非其身之所种则不食
C.且夫小人虽明知世之将乱 臣死且不避,卮酒安足辞
D.不亦远乎 王之好乐甚,则齐国其庶几乎
下列各项中,加点词语与现代汉语意义不相同的一项是( )
A.小人之仕也,无论所学识非也
B.而大体得治世之要
C.而以富贵之谋,贻天下之乱
D.一以委曲变化从世好者
下列各句中对文章的阐述,不正确的一项是( )
A.苏轼认为李斯以荀卿之学辅佐秦朝行暴政,致使天下大乱,作者则认为李斯是完全舍弃了荀子的说学,李斯的做法只不过是追随时势罢了。
B.作者由论李斯事秦进而泛论人臣事君的问题,强调为臣者对于国君的“悖谬无义”之政,不应为自身的富贵而阿附甚至助长之。
C.此文主旨在于指出秦行暴政是君王自身的原因,作者所论的不可“趋时”,“中侈君张吾之宠”的道理,在今天仍有借鉴意义。
D.文章开门见山,摆出苏轼的观点,然后通过对秦国发展历史的分析,驳斥了苏说的谬论,提出了自己的见解。论证严密,逐层深入,是一篇典范的史论。
把文言文阅读材料中画横线的句子翻译成现代汉语。
(1)秦之甘于刻薄而便于严法久矣
译文:
(2)谓天下将谅我之无可奈何于吾君,而不吾罪也
译文:
(3)其始之不同术也,而卒出于同者,岂其本志哉
译文:
如图,在三棱锥
中,平面
平面
,
,
,
,
为
中点.(Ⅰ)求点B到平面
的距离;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一问中利用因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系得
,
,
,
,
,
,
故平面
的法向量
而
,故点B到平面
的距离![]()
第二问中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,
再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故点B到平面
的距离![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
| AB |
| e1 |
| AD |
| e2 |
| AA1 |
| e3 |
已知数列
的前
项的和为
,
是等比数列,且
,
。
⑴求数列
和
的通项公式;
⑵设
,求数列
的前
项的和
。
⑴
,数列
的前
项的和为
,求证:
.
【解析】第一问利用数列
依题意有:当n=1时,
;
当
时,![]()
第二问中,利用由
得:
,然后借助于错位相减法
![]()
第三问中
![]()
结合均值不等式放缩得到证明。
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com