题目列表(包括答案和解析)
已知函数
,数列
的项满足:
,(1)试求![]()
(2) 猜想数列
的通项,并利用数学归纳法证明.
【解析】第一问中,利用递推关系
, ![]()
, ![]()
第二问中,由(1)猜想得:
然后再用数学归纳法分为两步骤证明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(数学归纳法证明)i)
,
,命题成立
ii) 假设
时,
成立
则
时,![]()
![]()
![]()
综合i),ii) :
成立
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(I)求证:
平面
;
(II)求证:
;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
![]()
【解析】第一问利用线面平行的判定定理,
,得到![]()
第二问中,利用![]()
,所以![]()
又因为
,
,从而得![]()
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明:![]()
分别是
的中点, ![]()
,
. …4分
(Ⅱ)证明:
四边形
为正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴![]()
![]()
过抛物线![]()
![]()
的对称轴上的定点
,作直线
与抛物线相交于
两点.
(I)试证明
两点的纵坐标之积为定值;
(II)若点
是定直线
上的任一点,试探索三条直线
的斜率之间的关系,并给出证明.
【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
(1)中证明:设
下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得
![]()
(2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之
设点N(-m,n),则直线AN的斜率KAN=
,直线BN的斜率KBN=![]()
![]()
KAN+KBN=
+![]()
本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
已知点
为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点![]()
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线
的方程;
(II)试证明:在
轴上存在定点
,使得
总能被
轴平分
【解析】第一问中设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为![]()
第二问中,设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得 ![]()
∵
,∴![]()
确定结论直线
与曲线
总有两个公共点.
然后设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
得到。
(1)设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为
. ………………2分
(2)设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得
,……5分
∵
,∴
,
∴直线
与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
当
时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点
,使得
总能被
轴平分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com