14.函数f (x)是定义在[0.1]上的函数.满足f (x)=2f =1.在每一个区间上.y=f (x)的图象都是斜率为同一常数m的直线的一部分.记直线x=.x=.x轴及函数y=f (x)的图象围成的梯形面积为an.则数列{an}的通项公式为 ▲ . 查看更多

 

题目列表(包括答案和解析)

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法:

(1)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;

(2)对给定的r(0<r<0.5),证明存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(1)所确定的含峰区间的长度不大于0.5+r;

(3)选取x1,x2∈(0,1),x1<x2,由(1)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.

(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.

对任意的[0,l]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.

(1)证明:对任意的x1x2∈(0,1),x1x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x*,1)为含峰区间;

(2)对给定的r(0<r<0.5=,证明:存在x1x2∈(0,1),满足x2x1≥2r,使得由(Ⅰ)所确定的含峰区间的长度不大于0.5+r;

(3)选取x1x2∈(0,1),x1x2,由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3x1x3x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1x2x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

若定义在[0,1]上的函数f(x)同时满足:①f(x)≥0;②f(1)=1;③若x1≥0,x2≥0且x1+x2≤1,则f(x1+x2)≥f(x1)+f(x2)成立.则称函数f(x)为“梦函数”.
(1)试验证f(x)=2x-1在区间[0,1]上是否为“梦函数”;
(2)若函数f(x)为“梦函数”,求f(x)的最值.

查看答案和解析>>

f(x)是定义在( 0,+∞)上的增函数,且f() = f(x)-f(y)  

    (1)求f(1)的值.

    (2)若f(6)= 1,解不等式 f( x+3 )-f() <2 .

查看答案和解析>>

f(x)是定义在( 0,+∞)上的增函数,且f() = f(x)-f(y)  

    (1)求f(1)的值.

    (2)若f(6)= 1,解不等式 f( x+3)-f() <2 .

查看答案和解析>>


同步练习册答案