题目列表(包括答案和解析)
设椭圆
(常数
)的左右焦点分别为
,
是直线
上的两个动点,
.
(1)若
,求
的值;
(2)求
的最小值.
![]()
【解析】第一问中解:设
,
则![]()
由
得
由
,得
②
![]()
第二问易求椭圆
的标准方程为:![]()
,
所以,当且仅当
或
时,
取最小值
.
解:设
,
……………………1分
则
,由
得
①……2分
(1)由
,得
② ……………1分
③ ………………………1分
由①、②、③三式,消去
,并求得
.
………………………3分
(2)解法一:易求椭圆
的标准方程为:
.………………2分
, ……4分
所以,当且仅当
或
时,
取最小值
.…2分
解法二:
,
………………4分
所以,当且仅当
或
时,
取最小值![]()
| ||
| 2 |
| ||
| 2 |
如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将
折起,使得B与C重合于O.
(Ⅰ)设Q为AE的中点,证明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因为Q为AE的中点,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二问中,作MN
AE,垂足为N,连接DN
因为AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因为AO
DM ,DM
平面AOE
因为MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中点M,连接MQ,DM,由题意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因为Q为AE的中点,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足为N,连接DN
因为AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因为AO
DM ,DM
平面AOE
因为MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值为![]()
已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个.
(1)从中任取1个球, 求取得红球或黑球的概率;
(2)从中一次取2个不同的球,试列出所有基本事件;并求至少有一个是红球概率。
(3)从中取2次,每次取1个球,在放回的条件下求至少有一个是红球概率。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com