设函数在上可导.且导函数.则当时.下列不等式:(1)(2)(3) 查看更多

 

题目列表(包括答案和解析)

14、设函数f(x)、g(x)在R上可导,且导函数f′(x)>g′(x),则当a<x<b时,下列不等式:
(1)f(x)>g(x);
(2)f(x)<g(x);
(3)f(x)+g(b)<g(x)+f(b);
(4) f(x)+g(a)>g(x)+f(a).
正确的有
(3),(4)

查看答案和解析>>

设函数f(x)、g(x)在R上可导,且导函数f′(x)>g′(x),则当a<x<b时,下列不等式:
(1)f(x)>g(x);
(2)f(x)<g(x);
(3)f(x)+g(b)<g(x)+f(b);
(4) f(x)+g(a)>g(x)+f(a).
正确的有 ________.

查看答案和解析>>

设函数f(x)、g(x)在R上可导,且导函数f′(x)>g′(x),则当a<x<b时,下列不等式:
(1)f(x)>g(x);
(2)f(x)<g(x);
(3)f(x)+g(b)<g(x)+f(b);
(4) f(x)+g(a)>g(x)+f(a).
正确的有 ______.

查看答案和解析>>

设函数f(x)、g(x)在R上可导,且导函数f′(x)>g′(x),则当a<x<b时,下列不等式:
(1)f(x)>g(x);
(2)f(x)<g(x);
(3)f(x)+g(b)<g(x)+f(b);
(4) f(x)+g(a)>g(x)+f(a).
正确的有    

查看答案和解析>>

设函数f(x)、g(x)在R上可导,且导函数f′(x)>g′(x),则当a<x<b时,下列不等式:
(1)f(x)>g(x);
(2)f(x)<g(x);
(3)f(x)+g(b)<g(x)+f(b);
(4) f(x)+g(a)>g(x)+f(a).
正确的有    

查看答案和解析>>

1.  2.  3. 4.甲  5. 

6.   7.  8.    9.  10.   11.  12. 

13. (1)直三棱柱ABC―A1B1C1中,BB1⊥底面ABC,

则BB1⊥AB,BB1⊥BC,

    又由于AC=BC=BB1=1,AB1=,则AB=

    则由AC2+BC2=AB2可知,AC⊥BC,

    又由上BB1⊥底面ABC可知BB1⊥AC,则AC⊥平面B1CB,

    所以有平面AB1C⊥平面B1CB;------------------------------------------------------- 8分

(2)三棱锥A1―AB1C的体积.----------14分

(注:还有其它转换方法)

14. 解:(1)由条件知 恒成立

又∵取x=2时,与恒成立,  ∴.

(2)∵   ∴.

恒成立,即恒成立.

解出:,

.

(3)由分析条件知道,只要图象(在y轴右侧)总在直线 上方即可,也就是直线的斜率小于直线与抛物线相切时的斜率位置,于是:

 

.

解法2:必须恒成立,

恒成立.

①△<0,即 [4(1-m)]2-8<0,解得: ;

   解出:.

总之,.

 

 


同步练习册答案