(3)设 ,.若图上的点都位于直线的上方.求实数m的取值范围. 南师大附校09高考二轮复习限时训练(二) 查看更多

 

题目列表(包括答案和解析)

,x∈[0,+∞),若f(x)图象上的点都位于直线y=+x+的上方,求实数m的取值范围。

查看答案和解析>>

如图1,在平面内,ABCD边长为2的正方形,ADD″A1和CDD″C1都是正方形.将两个正方形分别沿AD,CD折起,使D″与D′重合于点D1.设直线l过点B且垂直于正方形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为θ,当t=2时,求θ的余弦值;
(2)当t>2时在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,请说明理由.
精英家教网

查看答案和解析>>

如图1,在平面内,ABCD边长为2的正方形,ADD″A1和CDD″C1都是正方形.将两个正方形分别沿AD,CD折起,使D″与D′重合于点D1.设直线l过点B且垂直于正方形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为θ,当t=2时,求θ的余弦值;
(2)当t>2时在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分所成的比λ;若不存在,请说明理由.

查看答案和解析>>

如图1,在平面内,ABCD边长为2的正方形,ADD″A1和CDD″C1都是正方形.将两个正方形分别沿AD,CD折起,使D″与D′重合于点D1.设直线l过点B且垂直于正方形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为θ,当t=2时,求θ的余弦值;
(2)当t>2时在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分所成的比λ;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图1,在平面内,ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.将两个正方形分别沿AD,CD折起,使D′′与D′重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
(Ⅰ) 设二面角E-AC-D1的大小为θ,若
π
4
≤θ≤
π
3
,求线段BE长的取值范围;
(Ⅱ)在线段D1E上存在点P,使平面PA1C1∥平面EAC,求
D1P
PE
与BE之间满足的关系式,并证明:当0<BE<a时,恒有
D1P
PE
<1.

查看答案和解析>>

1.  2.  3. 4.甲  5. 

6.   7.  8.    9.  10.   11.  12. 

13. (1)直三棱柱ABC―A1B1C1中,BB1⊥底面ABC,

则BB1⊥AB,BB1⊥BC,

    又由于AC=BC=BB1=1,AB1=,则AB=

    则由AC2+BC2=AB2可知,AC⊥BC,

    又由上BB1⊥底面ABC可知BB1⊥AC,则AC⊥平面B1CB,

    所以有平面AB1C⊥平面B1CB;------------------------------------------------------- 8分

(2)三棱锥A1―AB1C的体积.----------14分

(注:还有其它转换方法)

14. 解:(1)由条件知 恒成立

又∵取x=2时,与恒成立,  ∴.

(2)∵   ∴.

恒成立,即恒成立.

解出:,

.

(3)由分析条件知道,只要图象(在y轴右侧)总在直线 上方即可,也就是直线的斜率小于直线与抛物线相切时的斜率位置,于是:

 

.

解法2:必须恒成立,

恒成立.

①△<0,即 [4(1-m)]2-8<0,解得: ;

   解出:.

总之,.

 

 


同步练习册答案