GN⊥AC (2)点P在A点处证明:取DC中点S.连接AS.GS.GA 查看更多

 

题目列表(包括答案和解析)

在长方形ABEF中,D,C分别是AF和BE的中点,M和N分别是AB和AC的中点,AF=2AB=2a,将平面DCEF沿着DC折起,使角∠ADF=90°,G是DF上一动点,求证:
(1)GN⊥AC
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

查看答案和解析>>

在长方形ABEF中,D,C分别是AF和BE的中点,M和N分别是AB和AC的中点,AF=2AB=2a,将平面DCEF沿着DC折起,使角∠ADF=90°,G是DF上一动点,求证:
(1)GN⊥AC
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

查看答案和解析>>

在长方形ABEF中,D,C分别是AF和BE的中点,M和N分别是AB和AC的中点,AF=2AB=2a,将平面DCEF沿着DC折起,使角∠ADF=90°,G是DF上一动点,求证:
(1)GN⊥AC
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

查看答案和解析>>

在直角三角形ABC中,∠ACB=90°,AC=BC=2,点P是斜边AB上的一个三等分点,则
CP
CB
+
CP
CA
=
4
4

查看答案和解析>>

【选做题】在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1 几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.选修4-2 矩阵与变换
若点A(2,2)在矩阵M=
cosα-sinα
sinαcosα
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵.
C.选修4-4 坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,
曲线C1ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
(t∈R)交于A、B两点.求证:OA⊥OB.
D.选修4-5 不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>


同步练习册答案