题目列表(包括答案和解析)
,故选C. ![]()
答案:C
【命题立意】:本题考查复数的除法运算,分子、分母需要同乘以分母的共轭复数,把分母变为实数,将除法转变为乘法进行运算.
| 证人所说的颜色(正确率80%) | |||
| 真实颜色 | 绿色(辆) | 红色(辆) | 合计 |
| 绿色(85%) | 1700 | ||
| 红色(15%) | 300 | ||
| 合计(辆) | 2000 | ||
深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑. 请问警察的认定对红色出租车公平吗?试说明理由.
如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB
(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
![]()
【解析】本试题主要考查了立体几何中的运用。
(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE为等腰三角形.
取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =
.
连接FG,则FG∥EC,FG⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
连接AG,AG= 2 ,FG2= DG2-DF2
=
,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小为120°
1.(1)因为
,所以.files/image388.gif)
又
是圆O的直径,所以.files/image391.gif)
又因为
(弦切角等于同弧所对圆周角)
所以
所以.files/image397.gif)
又因为
,所以
相似
所以
,即.files/image158.gif)
(2)因为
,所以
,
因为
,所以.files/image409.gif)
由(1)知:
。所以.files/image413.gif)
所以
,即圆的直径.files/image417.gif)
又因为
,即.files/image421.gif)
解得.files/image423.gif)
2.依题设有:.files/image425.gif)
令
,则.files/image429.gif)
.files/image431.gif)
.files/image429.gif)
.files/image433.gif)
.files/image435.gif)
.files/image435.gif)
.files/image438.gif)
3.将极坐标系内的问题转化为直角坐标系内的问题
点
的直角坐标分别为.files/image442.gif)
故
是以
为斜边的等腰直角三角形,
进而易知圆心为
,半径为
,圆的直角坐标方程为
,即.files/image453.gif)
将
代入上述方程,得
,即.files/image459.gif)
4.假设
,因为
,所以
。
又由
,则
,
所以
,这与题设矛盾
又若
,这与
矛盾
综上可知,必有
成立
同理可证
也成立
命题成立
5. 解:由a1=S1,k=
.下面用数学归纳法进行证明.
1°.当n=1时,命题显然成立;
2°.假设当n=k(k
N*)时,命题成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)=
k(k+1)(k+2)(k+3),
则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)=
k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=
( k+1)(k+1+1)(k+1+2)(k+1+3)
即命题对n=k+1.成立
由1°, 2°,命题对任意的正整数n成立.
6.(1)因为
,
,
,所以.files/image489.gif)
故事件A与B不独立。
(2)因为.files/image491.gif)
.files/image493.gif)
所以.files/image495.gif)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com