得 分评卷人 (19) (本小题满分13分) 查看更多

 

题目列表(包括答案和解析)

一次考试某简答题满分5分,以分为给分区间.这次考试有人 参加,该题没有得零分的人,所有人的得分按分组所得的频率分布直方图如图所示.设其众数、中位数、平均分最大的可能值分别为,则(  )

A.                      B.

C.                         D.

 

查看答案和解析>>

某学校高一(1)、(2)班各有49名学生.两班在一次数学测验中的成绩统计(试卷总分为100分)如下:

班级

平均分

众数

中位数

标准差

(1)班

79

70

87

19.8

(2)班

79

70

79

5.2

(1)请你对下面的一段话给予简要分析:(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分79分,得70分的人最多,我得了85分,在班里算是上游了!”

(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出教学建议.

查看答案和解析>>

为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识

竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得

分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频率分布直

方图,解答下列问题:

⑴填充频率分布表的空格(将答案直接填在表格内);

⑵补全频率分布直方图;

⑶若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

80.5~90.5

16

0.32

90.5~100.5

合计

50


查看答案和解析>>

某学校高一(1)、(2)班各有49名学生.两班在一次数学测验中的成绩统计如下:

班级

平均分

众数

中位数

标准差

(1)班

79

70

87

19.8

(2)班

79

70

79

5.2

(1)请你对下面的一段话给予简要分析:

(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分79分,得70分的人最多,我得了85分,在班里算是上游了!”

(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出教学建议.

查看答案和解析>>

(2012•黄冈模拟)将5名支教志愿者分配到3所学校,每所学校至少分1人,至多分2人,且其中甲、乙2人不到同一所学校,则不同的分配方法共有(  )种(  )

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。

1.B  2.D 3.B  4.C  5.C  6.B  7.A  8.B  9.A  10.D

 

二、填空题:本大题共5个小题,每小题5分,共25分,把答案填在题中的横线上。

11.6  12.2   13.80  14.20  15. 0,

三、解答题:本大题共6小题,共75分。解答应写文字说明,证明过程或演算步骤。

16.解(1)证明:由

………………………………………………4分

(2)由正弦定理得     ∴……① …………6分

  又,=2,       ∴ …………② …………8分

解①②得 ,           …………………………………………10分

                          …………………12分

17.解:(1)由,即=0.……………2分

当n>2时有

   ∴                        ……………………………6分

(2)由(1)知n>2时,……………8分

=0,  =2也适合上式,

   ∴……………………10分

                  =1-<1……………………………………………12分

 

18.解:(1)分别取BE、AB的中点M、N,

连结PM、MC,PN、NC,则PM=1,MB=,BC=

∴MC=,而PN=MB=

NC=,∴PC=,…………………………4分

故所求PC与AB所成角的余弦值为………6分

(2)连结AP,∵二面角E-AB-C是直二面角,且AC⊥AB

∴∠BAP即为所求二面角的平面角,即∠BAP=300……8分

在RtΔBAF中,tan∠ABF=,∴∠ABF=600

故BF⊥AP,    ………………………………………10分

又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC………12分

另解:分别以AB、AC、AF为x、y、z轴建立直角坐标系,

  ∴

  ∴

故异面直线PC与AB所成的角的余弦值为

(2)分别设平面ABC和平面PAC的法向量分别为,P点坐标设为,则,则由

再由

,即

BF⊥AP,BF⊥AC∴BF⊥平面PAC

 

19.解:(1)当0<x≤10时,……2分

当x >10时,…………4分

…………………………………5分

(2)①当0<x≤10时,由

∴当x=9时,W取最大值,且……9分

②当x>10时,W=98

当且仅当…………………………12分

综合①、②知x=9时,W取最大值.

所以当年产量为9千件时,该公司在这一品牌服装生产中获利最大.……13分

20. 解: (I) ,依题意有:,…………………2分

            即,

         ,由

          (也可写成闭区间)……………4分

(2)   (1)

     函数的图象与直线的交点的个数问题可转化为方程(1)的解的个数问题.

       令

…………………………5分

6分

 

   ……………………9分

的极大值为

的图象与轴只有一个交点.…………………………………12分

综上所述: ;

.……………13分

 

21.解:(1)B(0,-b)

,即D为线段FP的中点.

……………………………2分

,即A、B、D共线.

而 

,得,

………………………………………5分

 

(2)∵=2,而,∴,故双曲线的方程为………①

∴B的坐标为(0,-1)…………………………………………………………6分

假设存在定点C(0,)使为常数.

设MN的方程为………………②

②代入①得………………………………………7分

由题意得:   得:……8分

设M、N的坐标分别为(x1,y1) 、(x2,y2)

     …………………………………………………………9分

=

         =

==,…………………………10分

整理得:

对满足恒成立.

解得

存在轴上的定点C(0,4),使为常数17.…………………………13分

 

 


同步练习册答案