14.设函数内有定义.则下列函数 查看更多

 

题目列表(包括答案和解析)

设函数f(x)对其定义域内的任意实数,则称函数f(x)为上凸函数.现有下列命题:
①f(x)=sinx,x∈[0,π]是上凸函数;
②f(x)=lnx(x>0)是上凸函数;
③二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
④f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
其中,正确命题的序号是    (写出所有你认为正确命题的序号).

查看答案和解析>>

下列命题中正确命题的序号是
①②③⑤
①②③⑤

①若A={x|x>0},B=R,则f:x→y=x2是A到B的映射;
②设函数f (x) 对任意实数x、y都有f (x+y)=f (x)•f (y),且f (1)≠0,则f (0)=1;
③既是奇函数,又是偶函数的函数有无穷多个;
④f (x)是R上的偶函数,则f (x)•f (-x)>0;
⑤存在常数M对函数y=f (x)的定义域内任意x都有f (x)≤M,则M是y=f (x)的最大值.

查看答案和解析>>

下列命题中正确命题的序号是   
①若A={x|x>0},B=R,则f:x→y=x2是A到B的映射;
②设函数f (x) 对任意实数x、y都有f (x+y)=f (x)•f (y),且f (1)≠0,则f (0)=1;
③既是奇函数,又是偶函数的函数有无穷多个;
④f (x)是R上的偶函数,则f (x)•f (-x)>0;
⑤存在常数M对函数y=f (x)的定义域内任意x都有f (x)≤M,则M是y=f (x)的最大值.

查看答案和解析>>

下列命题中正确命题的序号是________.
①若A={x|x>0},B=R,则f:x→y=x2是A到B的映射;
②设函数f (x) 对任意实数x、y都有f (x+y)=f (x)•f (y),且f (1)≠0,则f (0)=1;
③既是奇函数,又是偶函数的函数有无穷多个;
④f (x)是R上的偶函数,则f (x)•f (-x)>0;
⑤存在常数M对函数y=f (x)的定义域内任意x都有f (x)≤M,则M是y=f (x)的最大值.

查看答案和解析>>

给出下列几个命题:
①若函数f(x)的定义域为R,则g(x)=f(x)+f(-x)一定是偶函数;
②若函数f(x)是定义域为R的奇函数,对于任意的x∈R都有f(x)+f(2-x)=0,则函数f(x)的图象关于直线x=1对称;
③已知x1,x2是函数f(x)定义域内的两个值,当x1<x2时,f(x1)>f(x2),则f(x)是减函数;
④设函数y=
1-x
+
x+3
的最大值和最小值分别为M和m,则M=
2
m

⑤若f(x)是定义域为R的奇函数,且f(x+2)也为奇函数,则f(x)是以4为周期的周期函数.
其中正确的命题序号是
①④⑤
①④⑤
.(写出所有正确命题的序号)

查看答案和解析>>

一、选择题:

DDCBA  BBDDA

ycy

11.0     12.(±1,0)    13.1    14.②④      15 706

三、解答题:

16.解:    2分

(Ⅰ)                                                        4分

(Ⅱ)由

单调递增区间为                    8分

(Ⅲ)

                          12分

17.解:(Ⅰ)                        6分

18.解:(Ⅰ)证明:∵PA⊥平面ABCD   ∴PA⊥BD

∵ABCD为正方形   ∴AC⊥BD

∴BD⊥平面PAC又BD在平面BPD内,

∴平面PAC⊥平面BPD      6分

(Ⅱ)解法一:在平面BCP内作BN⊥PC垂足为N,连DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND为二面角B―PC―D的平面角,

在△BND中,BN=DN=,BD=

∴cos∠BND =                             12分

解法二:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立空间坐标系如图,在平面BCP内作BN⊥PC垂足为N连DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

∴∠BND为二面角B―PC―D的平面角                                8分

                          10分

           12分

解法三:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立如图空间坐标系,作AM⊥PB于M、AN⊥PD于N,易证AM⊥平面PBC,AN⊥平面PDC,

                            10分

∵二面角B―PC―D的平面角与∠MAN互补

∴二面角B―PC―D的余弦值为                                 12分

19.解:(Ⅰ)

          4分

又∵当n = 1时,上式也成立,             6分

(Ⅱ)              8分

     ①

     ②

①-②得:

                                             12分

20.解:(Ⅰ)由MAB的中点,

AB两点的坐标分别为

M点的坐标为                                 4分

M点的直线l上:

                                                  7分

(Ⅱ)由(Ⅰ)知,不妨设椭圆的一个焦点坐标为关于直线l

上的对称点为

则有                       10分

由已知

,∴所求的椭圆的方程为                       12分

21.解:(Ⅰ)∵函数f(x)图象关于原点对称,∴对任意实数x

                            2分

                     4分

(Ⅱ)当时,图象上不存在这样的两点使结论成立               5分

假设图象上存在两点,使得过此两点处的切线互相垂直,则由

,知两点处的切线斜率分别为:

此与(*)相矛盾,故假设不成立                                   9分

(Ⅲ)证明:

在[-1,1]上是减函数,且

∴在[-1,1]上,时,

    14分