解(1)随即变量的取值为2.3.4. 查看更多

 

题目列表(包括答案和解析)

设sinx+cosx+a=0在[0,2π]内有相异两实数解α、β.

(1)求常数a的取值范围;

(2)求α+β的值.

查看答案和解析>>

洛萨•科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即
n2
);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,1.对科拉茨(Lothar Collatz)猜想,目前谁也不能证明,更不能否定.现在请你研究:如果对正整数n(首项)按照上述规则施行变换(注:1可以多次出现)后的第八项为1,则n的所有可能的取值为
{2,3,16,20,21,128}
{2,3,16,20,21,128}

查看答案和解析>>

设f1(x)=|x-1|,f2(x)=-x2+6x-5,函数g(x)是这样定义的:当f1(x)≥f2(x)时,g(x)=f1(x),当f1(x)<f2(x)时,g(x)=f2(x),若方程g(x)=a有四个不同的实数解,则实数a的取值范围是
(3,4)
(3,4)

查看答案和解析>>

(2010•河西区一模)设f1(x)=|x-1|,f2(x)=-x2+6x-5,函数g(x)=
f1(x),f1(x)≥f2(x)
f2(x),f1(x)<f2(x)
,若方程g(x)=a有四个不同的实数解,则实数a的取值范围是
(3,4)
(3,4)

查看答案和解析>>

已知函数f(x)=|x-a|,g(x)=ax,(a∈R).
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)•f(x),试求函数y=F(x)在区间[1,2]上的最大值.

查看答案和解析>>


同步练习册答案