题目列表(包括答案和解析)
为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:
[10.75,10.85),3;[10.85,10.95),9;[10.95,11.05),13;[11.05,11.15),16;[11.15,11.25),26;[11.25,?11.35?),20;[11.35,11.45),7;[11.45,11.55),4;[11.55,11.65),2;
(1)列出频率分布表(含累积频率);
(2)画出频率分布直方图以及频率分布折线图;
(3)据上述图表,估计数据落在[10.95,11.35)范围内的可能性是百分之几?
(4)数据小于11.20的可能性是百分之几?
思路解析:按解题程序解出即可。
下列说法正确的是 。
(1)从匀速传递的产品生产流水线上,质检人员每20分钟从中抽取一件产品进行检测,这样的抽样方法为分层抽样;
(2)两个随机变量相关性越强,相关系数
的绝对值越接近1,若
或
时,则
与
的关系完全对应(即有函数关系),在散点图上各个散点均在一条直线上;
(3)在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
(4)对于回归直线方程
,当
每增加一个单位时,
平均增加12个单位;
(5)已知随机变量
服从正态分布![]()
,若
,则
。
下列说法正确的是 。
(1)从匀速传递的产品生产流水线上,质检人员每20分钟从中抽取一件产品进行检测,这样的抽样方法为分层抽样;
(2)两个随机变量相关性越强,相关系数
的绝对值越接近1,若
或
时,则
与
的关系完全对应(即有函数关系),在散点图上各个散点均在一条直线上;
(3)在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
(4)对于回归直线方程
,当
每增加一个单位时,
平均增加12个单位;
(5)已知随机变量
服从正态分布![]()
,若
,则
。
在极坐标系中,圆
:
和直线
相交于
、
两点,求线段
的长
【解析】本试题主要考查了极坐标系与参数方程的运用。先将圆的极坐标方程圆
:
即
化为直角坐标方程即 ![]()
然后利用直线
即
,得到圆心到直线的距离
,从而利用勾股定理求解弦长AB。
解:分别将圆
和直线
的极坐标方程化为直角坐标方程:
圆
:
即
即
,
即
, ∴ 圆心
,
---------3分
直线
即
, ------6分
则圆心
到直线
的距离
,----------8分
则
即所求弦长为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com