得即. 查看更多

 

题目列表(包括答案和解析)

 

,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。

 

 

查看答案和解析>>

已知函数

(1)求函数的最小正周期和最大值;

(2)求函数的增区间;

(3)函数的图象可以由函数的图象经过怎样的变换得到?

【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为

第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。

第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

解:(1)函数的最小正周期为,最大值为

(2)函数的单调区间与函数的单调区间相同。

 

所求的增区间为

所求的减区间为

(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

 

查看答案和解析>>

已知函数取得极值

(1)求的单调区间(用表示);

(2)设,若存在,使得成立,求的取值范围.

【解析】第一问利用

根据题意取得极值,

对参数a分情况讨论,可知

时递增区间:    递减区间: ,

时递增区间:    递减区间: ,

第二问中, 由(1)知:

 

从而求解。

解:

…..3分

取得极值, ……………………..4分

(1) 当时  递增区间:    递减区间: ,

时递增区间:    递减区间: , ………….6分

 (2)  由(1)知:

 

……………….10分

, 使成立

    得:

 

查看答案和解析>>

且为常数。若存在一公差大于的等差数列,使得为一公比大于的等比数列,请写出满足条件的一组的值        .(答案不唯一,一组即可)

 

查看答案和解析>>

在海岸A处测得北偏东方向,距A为 km的B处有一鱼群,鱼群正以10 km / h的速度从B处向北偏东方向游动.在A处北偏西方向,离A为2 km的C处有一艘渔船获悉立即以km/ h的速度追捕鱼群,问渔船沿什么方向行驶才能最快追上鱼群?并求出所需时间。

查看答案和解析>>


同步练习册答案