题目列表(包括答案和解析)
(本小题满分12分)
已知动圆P过点
并且与圆
相外切,动圆圆心P的轨迹为W,过点N的直线
与轨迹W交于A、B两点。
(Ⅰ)求轨迹W的方程; (Ⅱ)若
,求直线
的方程;
(Ⅲ)对于
的任意一确定的位置,在直线
上是否存在一点Q,使得
,并说明理由。
(本小题满分12分)
已知椭圆
(a>b>0)的离心率为
,以原点为圆心。椭圆短半轴长半径的
圆与直线y=x+2相切,
(Ⅰ)求a与b;w.w.w.k.s.5.u.c.o.m
(Ⅱ)设该椭圆的左,右焦点分别为
和
,直线
过
且与x轴垂直,动直线
与y轴垂直,
交
与点p..求线段P
垂直平分线与
的交点M的轨迹方程,并指明曲线类型。
(本小题满分12分) 已知椭圆
的离心率
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线
且与x轴垂直,动直线
轴垂直,
于点P,求线段PF1的垂直平分线与
的交点M的轨迹方程,并指明曲线类型。
(本小题满分12分)已知定点
和直线
,过定点F与直线
相切的动圆圆心为点C。 (1)求动点C的轨迹方程; (2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求
的最小值。
一、选择题
ADBBD ABBAD
二、填空题
11、
12、
13、C
14、21 15、
16、(-
,0)
三、解答题
17、解:(1)
4分
∵f(x)的最小值为3
所以-a+
=3,a=2
∴f(x)=-2sin(2x+
)+5
6分
(2)因为(-
)变为了(
),所以h=
,k=-5
由图象变换得
=-2sin(2x-
)
8分
由2kp+
≤2x-
≤2kp+
得kp+
≤x≤kp+
所以单调增区间为
[kp+
, kp+
](k∈Z) 13分
18、解:(1)如图,在四棱锥
中,
∵BC∥AD,从而点D到平面PBC间的距离等于点A
到平面PBC的距离. 2分
∵∠ABC=
,∴AB⊥BC,
又PA⊥底面ABCD,∴PA⊥BC,
∴BC⊥平面 PAB, 4分
∴平面PAB⊥平面PBC,交线为PB,
过A作AE⊥PB,垂足为E,则AE⊥平面PBC,
∴AE的长等于点D到平面PBC的距离.
而
,∴
.
即点D到平面PBC的距离为
.
6分
(2)依题意依题意四棱锥P-ABCD的体积为
,
∴(BC+AD)AB×PA=
,∴
,
8分
平面PDC在平面PAB上的射影为PAB,SPAB=
,
10分
PC=
,PD=
,DC=
,SPDC=
a2,
12分
设平面PDC和平面PAB所成二面角为q,则cosq=
=
q=arccos
. 13分
19、解:(1)从10 道不同的题目中不放回地随机抽取3次,每次只抽取1道题,抽法总数为
只有第一次抽到艺术类数目的抽法总数为
∴
5分
(2)抽到体育类题目的可能取值为0,1,2,3则

∴
的分布列为

0
1
2
3
P




10分
11分
从而有
13分
20、解:(1)设
与
在公共点
处的切线相同
1分
由题意知
,∴
3分
由
得,
,或
(舍去)
即有
5分
(2)设
与
在公共点
处的切线相同

由题意知
,∴
即有
8分
令
,则
,于是
当
,即
时,
;
当
,即
时,
11分
21、解:(1)∵且|PF1|+|PF2|=
∴P的轨迹为以F1、F2为焦点的椭圆E,可设E:(其中b2=a2-5) 2分
在△PF
又
∴当且仅当| PF1 |=| PF2 |时,| PF1 |?| PF2 |取最大值, 4分
此时cos∠F1PF2取最小值
令=
a2=9,
∵c= ∴b2=4故所求P的轨迹方程为 6分
(2)设N(s,t),M(x,y),则由,可得(x,y-3)=λ(s,t-3)
∴x=λs,y=3+λ(t-3) 7分
而M、N在动点P的轨迹上,故且
消去S得解得 10分
又| t |≤2,∴,解得,故λ的取值范围是[,5] 12分
22、解:(1)由
,得
,代入
,得
,
整理,得
,从而有
,
,
是首项为1,公差为1的等差数列,
即
. 4分
(2)
,
,
,
,

. 8分
(3)∵


.
由(2)知
,
,




.
12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com