题目列表(包括答案和解析)
设M是由满足下列条件的函数
构成的集合:“①方程![]()
有实数根;②函数
的导数
满足
.”
(I)判断函数
是否是集合M中的元素,并说明理由;
(II)集合M中的元素
具有下面的性质:若
的定义域为D,则对于任意
[m,n]
D,都存在![]()
[m,n],使得等式
成立”,
试用这一性质证明:方程
只有一个实数根;
(III)设
是方程
的实数根,求证:对于
定义域中任意的
.
设M是由满足下列条件的函数
构成的集合:“①方程
有实数
根;②函数
”[来源:学+科+网Z+X+X+K]
(I)判断函数
是否是集合M中的元素,并说明理由;
(II)集合M中的元素
具有下面的性质:若
的定义域为D,则对于任意
成立。试用这一性
质证明:方程
只有一个实数根;
(III)对于M中的函数
的实数根,求证:对于
定义
域中任意的
当
且![]()
设M是由满足下列两个条件的函数
构成的集合:
①议程
有实根;②函数
的导数
满足0<
<1.
(I)若
,判断方程
的根的个数;
(II)判断(I)中的函数
是否为集合M的元素;
(III)对于M中的任意函数
,设x1是方程
的实根,求证:对于
定义域中任意的x2,x3,当| x2-x1|<1,且| x3-x1|<1时,有![]()
一、选择题:本大题共12小题,每小题5分,共60分.
1―5CADAD 6―10BACBC 11―12BD
二、填空题:本大题共4个小题,每小题4分,共16分.
13.
14.
15.
16.③④
三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)
解:(I)由题意知
……………………1分
--数学理科.files/image137.gif)
………………………………………………………6分
--数学理科.files/image141.gif)
………………………………………………8分
(II)--数学理科.files/image145.gif)
…………………………10分
--数学理科.files/image149.gif)
最大,其最大值为3.………………12分
18.(本小题满分12分)
解:以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系(如图).
|