题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、选择题:
1
2
3
4
5
6
7
8
9
10
A
D
A
D
B
C
A
C
B
A
二、填空题:
11.
12.
13.
14.
15.64
16.设
是三棱锥
四个面上的高
为三棱锥
内任一点,
到相应四个面的距离分别为
我们可以得到结论:
17.
三、解答题:
18.解:(1)由图像知
,
,
,又图象经过点(-1,0)


(2)

, 
当
即
时,
的最大值为
,当
,
即
时, 最小值为
19.(1)由几何体的正视图、侧视图、俯视图的面积总和为8得
取
中点
,联结
,
分别是
的中点,
,
,
E、F、F、G四点共面
又
平面
,
平面
(2)
就是二面角
的平面角
在
中,
, 
,即二面角
的大小为
解法二:建立如图所示空间直角坐标系,设平面
的一个法向量为
则
取
,又平面
的法向量为
(1,0,0)

(3)设
则

又
平面
点
是线段
的中点
20.解(1)由题意可知
又
(2)两类情况:共击中3次概率
共击中4次概率
所求概率为
(3)设事件
分别表示甲、乙能击中,
互相独立。

为所 求概率
21.解(1)设过抛物线
的焦点
的直线方程为
或
(斜率
不存在),则
得
,
当
(斜率
不存在)时,则
又
,
所求抛物线方程为
(2)设
由已知直线
的斜率分别记为:
,得



22.解:(I)依题意知:直线
是函数
在点(1,0)处的切线,故其斜率
所以直线
的方程为
又因为直线
与
的图像相切 所以由
得
(Ⅱ)因为
所以
当
时,
当
时, 
因此,
在
上单调递增,在
上单调递减。
因此,当
时,
取得最大值
(Ⅲ)当
时,
,由(Ⅱ)知:当
时,
,即
因此,有
即
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com