两点.是抛物线的准线上的一点.是坐标原点.若直线的斜率分别记为. 查看更多

 

题目列表(包括答案和解析)

如图,是抛物线的焦点,为准线与轴的交点,直线经过点

(Ⅰ)直线与抛物线有唯一公共点,求的方程;

 
(Ⅱ)直线与抛物线交于两点记的斜率分别为

(1)求证:为定值; 

(2)若点在线段上,且满足

,求点的轨迹方程.

 

查看答案和解析>>

如图,是抛物线的焦点,为准线与轴的交点,直线经过点
(Ⅰ)直线与抛物线有唯一公共点,求的方程;


 
(Ⅱ)直线与抛物线交于两点记的斜率分别为

(1)求证:为定值; 
(2)若点在线段上,且满足
,求点的轨迹方程.

查看答案和解析>>

抛物线y2=2px的准线的方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆.
(1)求定点N的坐标; 
(2)是否存在一条直线l同时满足下列条件:
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.

查看答案和解析>>

抛物线x2=4y准线上任一点R作抛物线的两条切线,切点分别为M、N,若O是坐标原点,则
OM
ON
=
 

查看答案和解析>>

抛物线的准线的方程为,该抛物线上的每个点到准线的距离都与到定点的距离相等,圆是以为圆心,同时与直线相切的圆,

(Ⅰ)求定点的坐标;

(Ⅱ)是否存在一条直线同时满足下列条件:

分别与直线交于两点,且中点为

被圆截得的弦长为2.

查看答案和解析>>

一、选择题:

  

1

2

3

4

5

6

7

8

9

10

A

D

A

D

B

C

A

C

B

A

二、填空题:

11.       12.         13.       14.    15.64

16.设是三棱锥四个面上的高为三棱锥内任一点,到相应四个面的距离分别为我们可以得到结论:

17.

 

三、解答题:

18.解:(1)由图像知 , ,,又图象经过点(-1,0)

  

      

   (2)

  

     ,  

时,的最大值为,当

 即时,  最小值为

 

19.(1)由几何体的正视图、侧视图、俯视图的面积总和为8得中点,联结分别是的中点,E、F、F、G四点共面

平面平面

(2)就是二面角的平面角

中,, 

,即二面角的大小为

解法二:建立如图所示空间直角坐标系,设平面

的一个法向量为

        

,又平面的法向量为(1,0,0)

(3)设

平面是线段的中点

 

20.解(1)由题意可知

  又

(2)两类情况:共击中3次概率

共击中4次概率

所求概率为

(3)设事件分别表示甲、乙能击中,互相独立。

为所 求概率

 

21.解(1)设过抛物线的焦点的直线方程为(斜率不存在),则    得

(斜率不存在)时,则

  所求抛物线方程为

(2)设

由已知直线的斜率分别记为:,得

    

  

 

22.解:(I)依题意知:直线是函数在点(1,0)处的切线,故其斜率所以直线的方程为

又因为直线的图像相切  所以由

   (Ⅱ)因为所以

时,  当时, 

因此,上单调递增,在上单调递减。

因此,当时,取得最大值

(Ⅲ)当时,,由(Ⅱ)知:当时,,即因此,有

 


同步练习册答案