题目列表(包括答案和解析)
(本小题满分16分)
已知正三角形OAB的三个顶点都在抛物线
上,其中O为坐标原点,设圆C是
的外接圆(点C为圆心)(1)求圆C的方程;(2)设圆M的方程为
,过圆M上任意一点P分别作圆C的两条切线PE、PF,切点为E、F,求
的最大值和最小值
(本小题满分16分)已知函数
在区间
上的最小值为
,令
,
,求证:![]()
(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为
元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
(本小题满分16分)设数列
的前n项和为
,数列
满足:
,且数列
的前
n项和为
.
(1) 求
的值;
(2) 求证:数列
是等比数列;
(3) 抽去数列
中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列
,若
的前n项和为
,求证:
.
(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为
元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
一、选择题:
1
2
3
4
5
6
7
8
9
10
A
D
A
D
B
C
A
C
B
A
二、填空题:
11.
12.
13.
14.
15.64
16.设
是三棱锥
四个面上的高
为三棱锥
内任一点,
到相应四个面的距离分别为
我们可以得到结论:
17.
三、解答题:
18.解:(1)由图像知
,
,
,又图象经过点(-1,0)


(2)

, 
当
即
时,
的最大值为
,当
,
即
时, 最小值为
19.(1)由几何体的正视图、侧视图、俯视图的面积总和为8得
取
中点
,联结
,
分别是
的中点,
,
,
E、F、F、G四点共面
又
平面
,
平面
(2)
就是二面角
的平面角
在
中,
, 
,即二面角
的大小为
解法二:建立如图所示空间直角坐标系,设平面
的一个法向量为
则
取
,又平面
的法向量为
(1,0,0)

(3)设
则

又
平面
点
是线段
的中点
20.解(1)由题意可知
又
(2)两类情况:共击中3次概率
共击中4次概率
所求概率为
(3)设事件
分别表示甲、乙能击中,
互相独立。

为所 求概率
21.解(1)设过抛物线
的焦点
的直线方程为
或
(斜率
不存在),则
得
,
当
(斜率
不存在)时,则
又
,
所求抛物线方程为
(2)设
由已知直线
的斜率分别记为:
,得



22.解:(I)依题意知:直线
是函数
在点(1,0)处的切线,故其斜率
所以直线
的方程为
又因为直线
与
的图像相切 所以由
得
(Ⅱ)因为
所以
当
时,
当
时, 
因此,
在
上单调递增,在
上单调递减。
因此,当
时,
取得最大值
(Ⅲ)当
时,
,由(Ⅱ)知:当
时,
,即
因此,有
即
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com