已知如图.的外接圆的圆心为,, 查看更多

 

题目列表(包括答案和解析)

 已知如图,的外接圆的圆心为,,

   则等于             .     

 

 

查看答案和解析>>

已知如图,△ABC的外接圆的圆心为O,AB=2,AC=3,BC=,则等于

[  ]

A.

B.

C.2

D.3

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直线y=t(0<t<8)与线段AF1、AF2分别交于点P、Q.

(1)当t=3时,求以F1,F2为焦点,且过PQ中点的椭圆的标准方程;

(2)过点Q作直线QR∥AF1交F1F2于点R,记△PRF1的外接圆为圆C.

①求证:圆心C在定直线7x+4y+8=0上;

②圆C是否恒过异于点F1的一个定点?若过,求出该点的坐标;若不过,请说明理由.

查看答案和解析>>

如图,已知椭圆的左、右焦点分别为F1,F2,其右准线l与x轴的交点为T,过椭圆的上顶点A作椭圆的右准线l的垂线,垂足为D,四边形AF1F2D为平行四边形.
(1)求椭圆的离心率;
(2)设线段F2D与椭圆交于点M,是否存在实数λ,使?若存在,求出实数λ的值;若不存在,请说明理由;
(3)若B是直线l上一动点,且△AF2B外接圆面积的最小值是4π,求椭圆方程.

查看答案和解析>>

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,其右准线l与x轴的交点为T,过椭圆的上顶点A作椭圆的右准线l的垂线,垂足为D,四边形AF1F2D为平行四边形.
(1)求椭圆的离心率;
(2)设线段F2D与椭圆交于点M,是否存在实数λ,使
TA
TM
?若存在,求出实数λ的值;若不存在,请说明理由;
(3)若B是直线l上一动点,且△AF2B外接圆面积的最小值是4π,求椭圆方程.

查看答案和解析>>

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

时,

  因为,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函数,且将的图象先向右平移个单位,再向上平移1个单位,可以得到的图象,∴是满足条件的一个平移向量.        12分

18. 解:(1)由等可能事件的概率意义及概率计算公式得;   5分

 (2)设选取的5只福娃恰好距离组成完整“奥运会吉祥物”差两种福娃记为事件B,

依题意可知,至少差两种福娃,只能是差两种福娃,则

6ec8aac122bd4f6e        11分

故选取的5只福娃距离组成完整“奥运会吉祥物”至少差两种福娃的概率为  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴点到平面的距离即求点到平面的距离

   取中点,连结

为等边三角形

                                                               

又由(1)知

  ∴点到平面的距离即点到平面的距离为………………8分

   (3)二面角即二面角

   过,垂足为点,连结

由(2)及三垂线定理知

为二面角的平面角

  

   …12分

解法2:(1)如图,取中点,连结

为等边三角形

又∵平面平面   

建立空间直角坐标系,则有

,

………………4分

(2)设平面的一个法向量为

∴点到平面的距离即求点到平面的距离

………………………………8分

(3)平面的一个法向量为

设平面的一个法向量为

∴二面角的大小为…………………………………12分

 

 

20. 解:(1)由题意知

当n=1时,

两式相减得

整理得:)       ………………………………………………(4分)

∴数列{an}是为首项,2为公比的等比数列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

,则,  

   

同理,有,∴为方程的两根

. 设,则     ①

  ②

由①、②消去得点的轨迹方程为.   ………………………………6分

(2)

∴当时,.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的单调递增区间为,单调递减区间为…………5分

(2)由题

……………………6分

……………………………………………7分

 

 

 

 

 

 

 

 

 

此时,,有一个交点;…………………………9分

时,

   

  

 

 

  

,

∴当时,有一个交点;

时,有两个交点;

      当时,,有一个交点.………………………13分

综上可知,当时,有一个交点;

          当时,有两个交点.…………………………………14分

 

 

 


同步练习册答案