题目列表(包括答案和解析)
设数列
前
项和为
,且
。其中
为实常数,
且
。
(1)求证:
是等比数列;
(2)若数列
的公比满足
且
,求
的
通项公式;
(3)若
时,设
,是否存在最大的正整数
,使得对任意
均有
成立,若存在求出
的值,若不存在请说明理由。
设数列
前
项和为
,且
。其中
为实常数,
且
。
(1) 求证:
是等比数列;
(2) 若数列
的公比满足
且
,求
的
通项公式;
(3)若
时,设
,是否存在最大的正整数
,使得对任意
均有
成立,若存在求出
的值,若不存在请说明理由。
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn+1 |
| 3 |
| 2 |
| k |
| 8 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com