由②与③得:. 查看更多

 

题目列表(包括答案和解析)

由原点O向三次曲线y=x3-3ax2(a≠0)引切线,切点为P1(x1,y1)(O,P1两点不重合),再由P1引此曲线的切线,切于点P2(x2,y2)(P1,P2不重合),如此继续下去,得到点列:{Pn(xn,yn)}
(1)求x1
(2)求xn与xn+1满足的关系式;
(3)若a>0,试判断xn与a的大小关系,并说明理由

查看答案和解析>>

由原点O向三次曲线y=x3-3ax2+bx(a≠0)引切线,切于不同于点O的点P1(x1,y1),再由P1引此曲线的切线,切于不同于P1的点P2(x2,y2),如此继续地作下去,…,得到点列{Pn(xn,yn)},试回答下列问题:
(1)求x1
(2)求xn与xn+1的关系;
(3)若a>0,求证:当n为正偶数时,xn<a;当n为正奇数时,xn>a.

查看答案和解析>>

由坐标原点O向曲线y=x3-3ax2+bx(a≠0)引切线,切于O以外的点P1(x1,y1),再由P1引此曲线的切线,切于P1以外的点P2(x2,y2),如此进行下去,得到点列{ Pn(xn,yn}}.
求:(Ⅰ)xn与xn-1(n≥2)的关系式;
(Ⅱ)数列{xn}的通项公式.

查看答案和解析>>

由某种设备的使用年限xi(年)与所支出的维修费yi(万元)的数据资料,算得
5
i=1
x
2
i
=90,
5
i=1
xiyi
=112,
5
i=1
xi
=20,
5
i=1
yi
=25.
(Ⅰ)求所支出的维修费y对使用年限x的线性回归方程y=bx+a;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.
附:在线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
-2
x
,a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
y
=
b
x+
a

查看答案和解析>>

由原点向三次曲线引切线,切于不同于点的点

,再由引此曲线的切线,切于不同于的点,如此继续地作下去,……,得到点列,试回答下列问题: ⑴求; (2)求的关系式;

(3)若,求证:当为正偶数时, ;当为正奇数时, .

查看答案和解析>>


同步练习册答案