(3)设“果圆 的方程为.. 查看更多

 

题目列表(包括答案和解析)

设椭圆的方程为=1(m、n>0),过原点且倾角为θ和π-θ(0<θ<)的两条直线分别交椭圆于A、C和B、D两点.

(1)

用θ、m、n表示四边形ABCD的面积S

(2)

若m、n为定值,当θ在(0,]上变化时,求S的最大值u

(3)

如果u>mn,求的取值范围

查看答案和解析>>

已知椭圆的方程为,点P的坐标为(-a,b).

(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点M的坐标;(2)设直线l1:y=k1x+p交椭圆于C、D两点,交直线l2:y=k2x于点E.,证明:E为CD的中点;

(3)对于椭圆上的点Q(acos,bsin)(0<<π),如果椭圆上存在不同的两个交点P1、P2满足,写出求作点P1、P2的步骤,并求出使P1、P2存在的的取值范围.

查看答案和解析>>

已知椭圆┍的方程为
x2
a2
+
y2
b2
=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
PM
=
1
2
PA
+
PB
),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-
b2
a2
,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足
PP1
+
PP2
=
PQ
,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.

查看答案和解析>>

设椭圆的左、右焦点分别为,上顶点为,离心率为 , 在轴负半轴上有一点,且

(1)若过三点的圆 恰好与直线相切,求椭圆C的方程;

(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

 

查看答案和解析>>

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且

(Ⅰ)若过三点的圆恰好与直线相切,求椭圆C的方程;

(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

 

查看答案和解析>>


同步练习册答案