解:特殊化:令.则△ABC为直角三角形..从而所求值为. 查看更多

 

题目列表(包括答案和解析)

给出四个命题
(1)若sin2A=sin2B,则△ABC为等腰三角形;
(2)若sinA=cosB,则△ABC为直角三角形;
(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;
(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形  
以上正确命题的个数是(  )

查看答案和解析>>

在△ABC中,a,b,c为三角形的三边,
(1)我们知道,△ABC为直角三角形的充要条件是存在一条边的平方等于另两边的平方和.类似地,试用三边的关系分别给出△ABC为锐角三角形的充要条件以及△ABC为钝角三角形的充要条件;(不需证明)
(2)由(1)知,若a2+b2=c2,则△ABC为直角三角形.试探究当三边a,b,c满足an+bn=cn(n∈N,n>2)时三角形的形状,并加以证明.

查看答案和解析>>

对于△ABC,有如下命题:
①若sin2A=sin2B,则△ABC为等腰三角形;   
②若sinA=cosB,则△ABC为直角三角形;
③若sin2A+sin2B+cos2C<1,则△ABC为钝角三角形.
其中正确命题的序号是
.(把你认为所有正确的都填上)

查看答案和解析>>

给出下列四个命题,则其中正确命题的序号为
(1)(2)(3)
(1)(2)(3)

(1)存在一个△ABC,使得sinA+cosA=1
(2)在△ABC中,A>B?sinA>sinB
(3)在△ABC中,若a=
3
,C=30°,c=1,则△ABC为直角三角形或等腰三角形
(4)在△ABC中,若sin2A=sin2B,则△ABC是等腰三角形.

查看答案和解析>>

下列命题:
①命题“事件A与B互斥”是“事件A与B对立”的必要不充分条件.
②“am2<bm2”是“a<b”的充分必要条件.
③“矩形的两条对角线相等”的否命题为假.
④在△ABC中,“∠B=60°”是∠A,∠B,∠C三个角成等差数列的充要条件.
⑤△ABC中,若sinA=cosB,则△ABC为直角三角形.
判断错误的有
②⑤
②⑤

查看答案和解析>>


同步练习册答案