解 ∵ kAB?kOM=-=-=-,∴ =-kAB?kOM=1?=.故选A. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>

.给出下列命题:

①命题“若b2-4ac<0,则方程ax2bxc=0(a≠0)无实根”的否命题;

②命题在“△ABC中,ABBCCA,那么△ABC为等边三角形”的逆命题;

③命题“若a>b>0,则>>0”的逆否命题;

④若“m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.

其中真命题的序号为________.

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

由下列各组命题组成的复合命题中,“p或q”为真、“p且q”为假、“非p”为真的是(    )

A.p:0=;q:0∈

B.p:等腰三角形都是锐角三角形;q:正三角形都相似

C.p:=U;q:=

D.p:不等式|x|>x的解集为{x|x<0=;q:不等式|x|≤x的解集为

查看答案和解析>>

(09年湖北鄂州5月模拟文)(13分)设f (x)=,方程f (x)=x有唯一解,数列{xn}满足f (x1)=1,
xn+1f (xn)(nN*).

⑴求数列{xn}的通项公式;

    ⑵已知数列{an}满足,求证:对一切n≥2的正整数都满足

查看答案和解析>>


同步练习册答案