21.(理)如图.|AB|=2.O为AB中点.直线过B且垂直于AB.过A的动直线与交于点C.点M在线段AC上.满足=. 查看更多

 

题目列表(包括答案和解析)

(理)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=.

   (1)求点M的轨迹方程;

   (2)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.

 

查看答案和解析>>

如图,几何体SABC的底面是由以AC为直径的半圆O与△ABC组成的平面图形,SO⊥平面ABC,AB⊥BC,SA=SB=SC=A C=4,BC=2.
(l)求直线SB与平面SAC所成角的正弦值;
(2)求几何体SABC的正视图中△S1A1B1的面积;
(3)试探究在圆弧AC上是否存在一点P,使得AP⊥SB,若存在,说明点P的位置并证明;若不存在,说明理由.

查看答案和解析>>

如图,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知S的身高约为
3
米(将眼睛距地面的距离SA按
3
米处理).
(1)求摄影者到立柱的水平距离AB和立柱的高度OB;
(2)立柱的顶端有一长为2米的彩杆MN,且MN绕其中点O在S与立柱所在的平面内旋转.在彩杆转动的任意时刻,摄影者观察彩杆MN的视角∠MSN(设为θ)是否存在最大值?若存在,请求出∠MSN取最大值时cosθ的值;若不存在,请说明理由.

查看答案和解析>>

如图,某海域中有甲、乙两艘测量船分别停留在相距(数学公式数学公式)海里的M,N两地,他们在同时观测岛屿上中国移动信号塔AB,设塔底延长线与海平面交于点O.已知点M在点O的正东方向,点N在点O的南偏西15°方向,ON=数学公式海里,在M处测得塔底B和塔顶A的仰角分别为30°和60°.
(1)求信号塔AB的高度;
(2)乙船试图在线段ON上选取一点P,使得在点P处观测信号塔AB的视角最大,请判断这样的点P是否存在,若存在,求出最大视角及OP的长;若不存在,说明理由.

查看答案和解析>>

如图,多面体ABC-A1B1C1中,三角形ABC是边长为4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4。
(1)若O是AB的中点,求证:OC⊥A1B;
(2)在线段AB1上是否存在一点D,使得CD∥平面A1B1C1,若存在确定点D的位置;若不存在,说明理由。

查看答案和解析>>

一、选择题(12’×5=60’

1.C

2.理D  文D

3.D

4.C. 提示:{f(n)}是等差数列(n∈N*)

5.A. 提示:当S1=S2=S3=S4=S时,λ=4;当高趋向于零时,λ无限接近2

6.A

7.A

8.D

9.B. 提示:∵|PF1|+|PF2|=2,|PF1|-|PF2|=±2,又m-1=n+1,

∴|PF1|2+|PF2|2=2(m+n)=4(m-1)=|F1F2|2

10.C

11.D

12.D. 提示:第一行C22,第二行C31+C32=C42,第三行C41+C42=C52,…,故S19=C22+C42+C52+…+C122=C133-C32=283.

 

二、填空题(4’×4=16’)

13.y=-

14.答案:相反数的相反数是它本身,集合A的补集的补集是它本身,一个复数的共轭的共轭是它本身,等等.

15.nn

16.4或6或7或8

 

三、解答题

17.解:(1) y=sin2ωx+ cos2ωx+ = sin(2ωx+ )+                   (4)

∵ T=             ∴ ω =2                                 (6)      

 (2) y=sin(4x+ )+  

∵  0≤x≤    ∴ ≤4x+ ≤π +                          (8)

∴  当x= 时,y=0  当x=时,y=                              (12)

 

18.(1)质点n次移动看作n次独立重复试验,记向左移动一次为事件A,

则P(A)=,P()=3秒后,质点A在点x=1处的概率P1=P3(1)=C31?p(1-p)2=3××()2=              (6’)

    (2)2秒后,质点A、B同在x=2处,即A、B两质点各做二次移动,其中质点A向右移动2次,质点B向左、向右各移动一次,故P2=P2(0)?P2(1)=C20?()2?C21??=          (12’)

考点解析:本题考查n次独立重复试验及独立事件同时发生的概率,但需要一定的分析、转化能力.

 

19.(1)∵AA1⊥面ABCD,∴AA1⊥BD,

又BD⊥AD,∴BD⊥A1D        (2’)

又A1D⊥BE,

∴A1D⊥平面BDE                (3’)

(2)连B1C,则B1C⊥BE,易证RtΔCBE∽RtΔCBB1

∴=,又E为CC1中点,∴BB12=BC2=a2

∴BB1=a          (5’)

取CD中点M,连BM,则BM⊥平面CD1,作MN⊥DE于N,连NB,则∠BNM是二面角B?DE?C的平面角                (7’)

RtΔCED中,易求得MN=,RtΔBMN中,tan∠BNM==,∴∠BNM=arctan (10’)

(3)易证BN长就是点B到平面A1DE的距离    (11’)

BN==a        (12’)

    (2)另解:以D为坐标原点,DA为x轴、DB为y轴、DD1为z轴建立空间直角坐标系

则B(0,a,0),设A1(a,0,x),E(-a,a,),=(-a,0,-x),=(-a,0,),∵A1D⊥BE

∴a2-x2=0,x2=2a2,x=a,即BB1=a.

考点解析:九(A)、九(B)合用一道立体几何题是近年立几出题的趋势,相比较而言,选用九(B)体系可以避开一些逻辑论证,取之以代数运算,可以减轻多数学生学习立体几何的学习压力.

 

20.若按方案1付款,设每次付款为a(万元)

则有a+a(1+0.8%)4+a(1+-0.8%)8=10×(1+0.8%)12        (4’)

即a×=10×1.00812,a=

付款总数S1=3a=9.9×1.00812                       (6’)

若按方案2付款,设每次付款额为b(万元),同理可得:b=    (8’)

付款总额为S2=12b=9.6×1.00812,故按有二种方案付款总额较少.   (12’)

考点解析:复习中要注意以教材中研究性学习内容为背景的应用问题.

 

21.(理)(1)设M(x,y),C(1,y0),∵=,∴=           (2’)

又A、M、C三点一线,∴=       ②                    (4’)

由(1)、(2)消去y0,得x2+4y2=1(y≠0)                          (6’)

   

      

 

(2)P(0,)是轨迹M短轴端点,∴t≥0时∠PQB或∠PBQ不为锐角,∴t<0

又∠QPB为锐角,∴?>0,∴(t,- )(1,- )=t+ >0,∴- <t<0         (12’)

考点解析:解析几何题注意隐藏的三点共线关系;平面向量运算也常常设置在解析几何考题当中.

 

21.(文)证明:(1) 设-1<x­1<x2<+∞

f(x1)-f(x2) =a-a + -

=a-a +          (4)

 ∵  -1<x1<x2 ,a>0

 ∴  a-a<0     <0

 ∴  f(x1)-f(x2)<0  即  f(x1)<f(x2) ,函数f(x)在(-1,+∞ )上为增函数.       (6)

 (2)  若方程有负根x0 (x0≠-1),则有a= -1

   若  x0<-1 , -1<-1   而 a>0    故  a ≠ -1           (10)

   若 -1<x0<0 ,   -1>2    而 a<a0=a ≠ -1

综上所述,方程f(x)=0没有负根.  

                                                                          (12)

 

22.(理)(1)Sn=an,∴Sn+1=an+1,an+1=Sn+1-Sn=an+1-an,∴= (n≥2)         (2’)

∴==…==1,∴an+1=n,an=n-1 (n≥2),又a1=0,∴an=n-1                  (4’)

   (2)bn+1=(1+ )n+1,bn=(1+ )n

∵<(n+1)?(1+ )n                                   (7’)

整理即得:(1+ )n<(1+ )n+1,即bn<bn+1                              (8’)

(3)由(2)知bn>bn-1­>…>b­1=                                               (10’)

又Cnr?()r=(??…)?()r≤()r,(0≤r≤n),

∴bn≤1+ +()2+…+()n=2-()n<2,∴≤bn<2                          (14’)

考点解析:这种“新概念”题需要较好的理解、分析能力,放缩法证明不等式是不等式证明的常用方法,也具有一定的灵活性,平时要注重概念的学习,常见题型的积累,提高思维能力和联想变通能力.

22.(文)见21(理).


同步练习册答案