[例3]如图3所示.两条互相平行的光滑金属导轨位于水平面内.距离为l=0.2m.在导轨的一端接有阻值为R=0.5Ω的电阻.在x≥0处有一与水平面垂直的均匀磁场.磁感强度B=0.5T.一质量为m=0.1kg的金属直杆垂直放置在导轨上.并以v0=2m/s的初速度进入磁场.在安培力和一垂直于杆的水平外力F的共同作用下做匀变速直线运动.加速度大小为a=2m/s2.方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略.且接触良好.求:(1)电流为零时金属杆所处的位置,(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向,(3)保持其他条件不变.而初速度v0取不同值.求开始时F的方向与初速度v0取值的关系.解析:杆在水平外力F和安培力的共同作用下做匀变速直线运动.加速度a方向向左.杆的运动过程:向右匀减速运动→速度为零→向左匀加速运动,外力F方向的判断方法:先假设.再根据结果的正负号判断. 查看更多

 

题目列表(包括答案和解析)

(2002?上海)在如图所示电路中,当变阻器R3的滑动头P向b端移动时(  )

查看答案和解析>>

(2011?上海模拟)如图甲所示,两根足够长的光滑平行金属导轨相距为L=0.40m,导轨平面与水平面成θ=30?角,上端和下端通过导线分别连接阻值R1=R2=1.2Ω的电阻,质量为m=0.20kg、阻值为r=0.20Ω的金属棒ab放在两导轨上,棒与导轨垂直且保持良好接触,整个装置处在垂直导轨平面向上的磁场中,取重力加速度g=10m/s2.若所加磁场的磁感应强度大小恒为B,通过小电动机对金属棒施加力,使金属棒沿导轨向上做匀加速直线运动,经过0.5s电动机的输出功率达到10W,此后保持电动机的输出功率不变,金属棒运动的v-t图如图乙所示,试求:
(1)磁感应强度B的大小;
(2)在0-0.5s时间内金属棒的加速度a的大小;
(3)在0-0.5s时间内电动机牵引力F与时间t的关系;
(4)如果在0-0.5s时间内电阻R1产生的热量为0.135J,则这段时间内电动机做的功.

查看答案和解析>>

(2011?上海模拟)如图甲所示,质量为m=1kg的物体置于倾角θ=37°的固定粗糙斜面上.对物体施以平行于斜面向上的恒定拉力F,t1=1s时撤去拉力,物体运动的部分v-t图象如图乙所示.求:(g=10m/s2
(1)拉力F和动摩擦因数μ的大小;
(2)0~1s内重力的平均功率;
(3)t=4s末物体与斜面底部的距离.

查看答案和解析>>

(22分)如图1所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E0,E>0表示电场方向竖直向上。T=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点。Q为线段N1N2的中点,重力加速度为g。上述d、E0、m、v、g为已知量。

(1)求微粒所带电荷量和磁感应强度B的大小;

(2)求电场变化的周期T;

(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值。

查看答案和解析>>

(2011?上海模拟)如图甲所示,一质量为m=1kg的小物块静止在粗糙水平面上的A点,从t=0时刻开始,物体在受如图乙所示规律变化的水平力F作用下向右运动,第3s末物块运动到B点时速度刚好为零,第5s末物块刚好回到A点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,则物体从A运动到B间的平均速度为
1.33
1.33
m/s,水平力F在5s时间内对小物块所做功的功率
4.8
4.8
W.

查看答案和解析>>


同步练习册答案