题目列表(包括答案和解析)
同学4人各写一张贺卡,先集中起来,然后每人从中任取一张贺卡;求下列条件的概率:
(1) 每人拿到的1张贺卡都是自己写的概率;
(2) 有且只有1个人拿到的贺卡是自己写的概率
【解析】本试题主要考查了古典概型的运用。解决该试题的关键是理解一次试验的所有基本事件数,然后结合事件A发生的事件数,利用比值可以得到概率值。
同学们会面对一个共同的问题,就是有时有太多的事情要做.例如,你可能面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你怎么办?
这里给出的霍奇森(Hodgson)算法,可以使得迟交作业的数目减到最小.这一算法已经广泛应用于工业生产安排的实践中.
假设你知道各项作业的到期日,并且知道或能估计出完成每项作业将花费的时间,下面是这个算法的自然语言表述:
第一步 把这些作业按到期日的顺序从左到右排列,从最早到期的到最晚到期的;
第二步 假设从左到右一项一项做这些作业的话,计算出从开始到完成某一项作业时所花的时间.依次做此计算直到完成了所列表中的全部作业而没有一项作业会超期,停止;或你算出某项作业将会超期,继续第三步;
第三步 考虑第一项将会超期的作业以及它左边的所有作业,从中取出花费时间最长的那项作业,并把它从表中去掉;
第四步 回到第二步,并重复第二到四步,直到做完.
![]()
根据上表,按霍奇森算法,写出程序框图和程序.
如图,将一张矩形的纸对折以后略微展开,竖立在桌面上,说明折痕为什么与桌面垂直.
从图中可直观地看出,折痕垂直于对折后的纸与桌面所形成的交线.由直线与平面垂直的判定定理知,折痕与桌面垂直.那么在折痕垂直于纸与桌面的交线未知的情况下,单凭折后的纸与桌面垂直,能否得出折痕与桌面垂直?转化为数学语言,即如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面吗?下面用不同的方法证明.
如图,已知平面α⊥平面β,平面α⊥平面γ,且β∩γ=a,β∩α=l,γ∩α=m.
求证:a⊥α.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com