得A.又点A.B在椭圆上.∴a2=12.b2=4.椭圆的方程为. (2)设AB:y=x+4.同理可得两交点的坐标分别为代入椭圆方程得 查看更多

 

题目列表(包括答案和解析)

本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(I)选修4-2:矩阵与变换
已知矩阵:x-y+4=0经矩阵A所对应的变换得直线l2,直线l2又经矩阵B所对应的变换得到直线l3:x+y+4=0,求直线l2的方程.
(II)选修4-4:坐标系与参数方程
求直线截得的弦长.
(III)选修4-5:不等式选讲
若存在实数x满足不等式|x-4|+|x-3|<a,求实数a的取值范围.

查看答案和解析>>

设向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函数y=
a
b
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求证:an=n+1;
(2)求bn的表达式;
(3)cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

查看答案和解析>>

设向量
=(x , 2)
=(x+n , 2x-1)
(n为正整数),函数y=
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

(1)求证:an=n+1(2).
(2)求bn的表达式.
(3)若cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.(注:
=( a1 ,a2 )
={ a1 ,a2 }
表示意义相同)

查看答案和解析>>

已知向量
a
=(0,-1)
b
=(
1
2
,1)
,直线l经过定点A(0,3)且以
a
+2
b
为方向向量.又圆C的方程为(x-m)2+(y-2)2=4(m>0).
(1)求直线l的方程;
(2)当直线l被圆C截得的弦长为2
3
时,求实数m的值.

查看答案和解析>>

设向量a =(),b =()(),函数 a·b在[0,1]上的最小值与最大值的和为,又数列{}满足:

   (1)求证:

(2)求的表达式;

(3),试问数列{}中,是否存在正整数,使得对于任意的正整数,都有成立?证明你的结论.

查看答案和解析>>


同步练习册答案