解法一:(Ⅰ)平面平面. 查看更多

 

题目列表(包括答案和解析)

(2007•浦东新区二模)已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(1)求抛物线C的方程.
(2)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中点,过M作平行于x轴的直线交抛物线C于点D,得到△ABD;再分别过弦AD、BD的中点作平行于x轴的直线依次交抛物线C于点E,F,得到△ADE和△BDF;按此方法继续下去.
解决下列问题:
①求证:a2=
16(1-kb)k2

②计算△ABD的面积S△ABD
③根据△ABD的面积S△ABD的计算结果,写出△ADE,△BDF的面积;请设计一种求抛物线C与线段AB所围成封闭图形面积的方法,并求出此封闭图形的面积.

查看答案和解析>>

(本小题满分12分)

某校共有800名学生,高三一次月考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:

组号

合计

分组

频数

4

6

20

22

18

10

5

频率

0.04

0.06

0.20

0.22

0.15

0.10

0.05

1

(Ⅰ) 李明同学本次数学成绩为103分,求他被抽中的概率

(Ⅱ) 为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并在这6名学生中在随机抽取2名由心理老师张老师负责面谈,求第七组至少有一名学生与张老师面谈的概率;

(Ⅲ) 估计该校本次考试的数学平均分。

 

查看答案和解析>>

(本小题满分12分)
某校共有800名学生,高三一次月考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:

组号
























合计
分组








频数
4
6
20
22
18

10
5

频率
0.04
0.06
0.20
0.22

0.15
0.10
0.05
1
(Ⅰ) 李明同学本次数学成绩为103分,求他被抽中的概率
(Ⅱ) 为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并在这6名学生中在随机抽取2名由心理老师张老师负责面谈,求第七组至少有一名学生与张老师面谈的概率;
(Ⅲ) 估计该校本次考试的数学平均分。

查看答案和解析>>

在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在惟一的实数λ,使得成立,此时称实数λ为“向量关于的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量是直线l:x-y+10=0的法向量,则“向量关于的终点共线分解系数”为   

查看答案和解析>>

在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在惟一的实数λ,使得成立,此时称实数λ为“向量关于的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量是直线l:x-y+10=0的法向量,则“向量关于的终点共线分解系数”为   

查看答案和解析>>


同步练习册答案