...(Ⅰ)证明:在所建立的坐标系中.可得 查看更多

 

题目列表(包括答案和解析)

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,PA切⊙O于点A,D为PA的中点,过点D引割线交⊙O于B、C两点.求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
设M=,N=,试求曲线y=sinx在矩阵MN变换下的曲线方程.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

A.选修4-1:几何证明选讲
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为,点P(2,-1)在矩阵A对应的变换下得到点P′(5,1),求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为,曲线C的参数方程为(α为参数),求曲线C截直线l所得的弦长.
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

 

A.选修4-1(几何证明选讲)

如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的交于点,延长.(1)求证:的中点;(2)求线段的长.

 

 

 

 

 

 

B.选修4-2(矩阵与变换)

已知矩阵,若矩阵属于特征值3的一个特征向量为,属于特征值-1的一个特征向量为,求矩阵

 

C.选修4-4(坐标系与参数方程)

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),求直线被曲线所截得的弦长.

 

 D.选修4—5(不等式选讲)

已知实数满足,求的最小值;

 

 

查看答案和解析>>


同步练习册答案