(2)设数列的前n项和分别为S.求m的值 查看更多

 

题目列表(包括答案和解析)

已知数列{an}前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an},{bn}的通项an,bn
(2)设数列{bn}前n项和为Bn,试比较
1
B1B2
+
1
B2B3
+…+
1
BnBn+1
与1的大小,并证明你的结论;
(3)设Tn=
b1
a1
+
b2
a2
+…
bn
an
,求证:Tn<3.

查看答案和解析>>

设数列{an} 前n项和
(1)求数列{an} 的通项公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],…,依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足
limn→∞
bn=4
.若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2010)-(S1+S2+…+S2010).

查看答案和解析>>

(1)设函数g(x)=
x-1
2
(x∈R)
,且数列{cn}满足c1=1,cn=g(cn-1)(n∈N,n>1);求数列{cn}的通项公式.
(2)设等差数列{an}、{bn}的前n项和分别为Sn和Tn,且
a3
b4+b6
+
a7
b2+b8
=
2
5
Sn
Tn
=
An+1
2n+7
,S2=6;求常数A的值及{an}的通项公式.
(3)若dn=
an(n为正奇数)
cn(n为正偶数)
,其中an、cn即为(1)、(2)中的数列{an}、{cn}的第n项,试求d1+d2+…+dn

查看答案和解析>>

设数列{an}前n项和Sn,且Sn=2an-2,令bn=log2an
(I)试求数列{an}的通项公式;
(Ⅱ)设cn=
bnan
,求证数列{cn}的前n项和Tn<2.
(Ⅲ)对任意m∈N*,将数列{2bn}中落入区间(am,a2m)内的项的个数记为dm,求数列{dm}的前m项和Tm

查看答案和解析>>

2009年曲靖一种高考冲刺卷理科数学(一)

一、

1 B 2C 3A 4A 5 A 6 D 7D 8C 9B

10B 11 C 12 A

1依题意得,所以,因此选B

2依题意得。又在第二象限,所以

,故选C

3

因此选A

4 由

因为为纯虚数的充要条件为

故选A

5如图,

故选A

6.设

故选D

7.设等差数列的首项为,公差,因为成等比数列,所以,即,解得,故选D

8.由,所以之比为2,设,又点在圆上,所以,即+-4,化简得=16,故选C

9.长方体的中心即为球心,设球半径为,则

于是两点的球面距离为故选B

10.先分别在同一坐标系上画出函数的图象(如图1)

www.ks5u.com   高考资源网

观察图2,显然,选B

11.依题意,

故选C

12.由题意知,

    ①

代入式①得

由方程的两根为

故选A。

二、

13.5   14.7    15.22    16.①

13.5.线性规划问题先作出可行域,注意本题已是最优的特定参数的特点,可考虑特殊的交点,再验证,由题设可知

应用运动变化的观点验证满足为所求。

14.7. 由题意得

因此A是钝角,

15.22,连接的周章为

16.①当时,,取到最小值,因次,是对称轴:②当时,因此不是对称中心;③由,令可得上不是增函数;把函数的图象向左平移得到的图象,得不到的图象,故真命题序号是①。

 17.(1)上单调递增,上恒成立,即上恒成立,即实数的取值范围

(2)由题设条件知上单调递增。

,即

的解集为

的解集为

18.(1)过连接

侧面

是边长为2的等边三角形。又点,在底面上的射影,

(法一)(2)就是二面角的平面角,都是边长为2的正三角形,即二面角的大小为45°

(3)取的中点为连接的中点,,又,且在平面上,又的中点,线段的长就是到平面的距离在等腰直角三角形中,,即到平面的距离是

(法二)(2)轴、轴、轴建立空间直角坐标系,则点设平面的法向量为,则,解得,平面的法向量

向量所成角为45°故二面角的大小为45°,

(3)由的中点设平面的法向量为,则,解得到平面的距离为

19.(1)取值为0,1,2,3,4

的分布列为

0

1

2

3

4

P

(2)由

所以,当时,由

时,由

即为所求‘

20.(1)在一次函数的图像上,

于是,且

数列是以为首项,公比为2的等比数列

(3)      由(1)知

 

21.(1)由题意得:

点Q在以M、N为焦点的椭圆上,即

点Q的轨迹方程为

(2)

设点O到直线AB的距离为,则

时,等号成立

时,面积的最大值为3

22.(1)

(2)由题意知

(3)等价证明

由(1)知

  

 

 


同步练习册答案