题目列表(包括答案和解析)
已知函数
在
取得极值
(1)求
的单调区间(用
表示);
(2)设
,
,若存在
,使得
成立,求
的取值范围.
【解析】第一问利用![]()
![]()
根据题意
在
取得极值, ![]()
对参数a分情况讨论,可知
当
即
时递增区间:
递减区间:
,
![]()
当
即
时递增区间:
递减区间:
,
![]()
第二问中,
由(1)知:
在
,
![]()
,![]()
在
![]()
![]()
从而求解。
解: ![]()
…..3分
在
取得极值,
……………………..4分
(1) 当
即
时 递增区间:
递减区间:
,
![]()
当
即
时递增区间:
递减区间:
,
………….6分
(2)
由(1)知:
在
,
![]()
,![]()
在
![]()
……………….10分
, 使
成立
![]()
![]()
![]()
得: ![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com