18. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)  已知二项式 

(1)求其展开式中第四项的二项式系数;

(2)求其展开式中第四项的系数 。

查看答案和解析>>

(本小题满分13分)某厂用甲、乙两种产品,已知生产1吨A产品,1吨B产品分别需要的甲乙原料数、可获得的利润及该厂现有原料数如表:

产品

所需原料

A产品(t)

B产品(t)

现有原料(t)

甲(t)

2

1

14

乙(t)

1

3

18

利润(万元)

5

3

 

(1)在现有原料下,A、B产品应各生产多少才能使利润最大?

(2)如果1吨B产品的利润增加到20万元,原来的最优解为何改变?

(3)如果1吨B产品的利润减少1万元,原来的最优解为何改变?

(4)1吨B产品的利润在什么范围,原最优解才不会改变?

查看答案和解析>>

 (本小题满分13分)

某市物价局调查了某种治疗H1N1流感的常规药品在2009年每个月的批发价格和该药品在药店的销售价格,调查发现,该药品的批发价格按月份以12元/盒为中心价随某一正弦曲线上下波动,且3月份的批发价格最高为14元/盒,7月份的批发价格最低为10元/盒.该药品在药店的销售价格按月份以14元/盒为中心价随另一正弦曲线上下波动,且5月份的销售价格最高为16元/盒,9月份的销售价格最低为12元/盒.

(Ⅰ)求该药品每盒的批发价格f(x)和销售价格g(x)关于月份的函数解析式;

(Ⅱ)假设某药店每月初都购进这种药品p 盒,且当月售完,求该药店在2009年哪些月份是盈利的?说明你的理由.

查看答案和解析>>

(本小题满分13分) 根据长沙市建设大河西的规划,市旅游局拟在咸嘉湖建立西湖生态文化公园. 如图,设计方案中利用湖中半岛上建一条长为的观光带AB,同时建一条连接观光带和湖岸的长为2的观光游廊BC,且BC与湖岸MN(湖岸可看作是直线)的夹角为60°,BA与BC的夹角为150°,并在湖岸上的D处建一个观光亭,设CD=xkm(1<x<4).

(Ⅰ)用x分别表示tan∠BDC和tan∠ADM;

(Ⅱ)试确定观光亭D的位置,使得在观光亭D处观赏

观光带AB的视觉效果最佳.

查看答案和解析>>

 (本小题满分13分)

已知椭圆的焦点为F1(-4,0),F2(4,0),过点F2且垂直于轴的直线与椭圆的一个交点为B,且|BF1|+|BF2|=10,设点A,C为椭圆上不同两点,使得|AF2|,|BF2|,|CF2|成等差数列.

(Ⅰ) 求椭圆的标准方程;

(Ⅱ) 求线段AC的中点的横坐标;

(Ⅲ)求线段AC的垂直平分线在y轴上的截距的取值范围.

查看答案和解析>>

2009年4月

一、选择题:本大题共10小题,每题5分,共50分.

1.B    2.A    3.C    4.C    5.B    6.A    7.C    8.A    9.B   10.B

二、填空题:本大题共5小题,每题5分,共25分.

11.4                                      12.                                  13.

14.                                  15.①

三、解答题:本题共6小题,共75分.

16.解:(1)  

 

(2)  

       

 

 

 

17.解:(1) 甲队以二比一获胜,即前两场中甲胜1场,第三场甲获胜,其概率为

(2) 乙队以2∶0获胜的概率为

乙队以2∶1获胜的概率为

∴乙队获胜的概率为P2=P'2+''2=0.16+0.192=0.352.

18.解:(1) ∵  函数是定义在R上的奇函数,

∵       ∴ 

处的切线方程为

∴  ,且, ∴ 

(2)

依题意对任意恒成立,   

对任意恒成立,即对任意恒成立,

19.解法一:(1) 证明:取中点为,连结

               ∵△是等边三角形, ∴

               又∵侧面底面

               ∴底面

               ∴在底面上的射影,

               又∵

              

               ∴,  ∴

                ∴,      ∴

(2) 取中点,连结,    

    ∵.    ∴

又∵

平面,∴

是二面角的平面角.                  

,∴,∴

∴二面角的大小为                       

解法二:证明:(1) 取中点为中点为,连结

∵△是等边三角形,∴

又∵侧面底面,∴底面

∴以为坐标原点,建立空间直角坐标系

如图,   

,△是等边三角形,

     ∴

(2) 设平面的法向量为

   ∴

,则,∴               

设平面的法向量为,              

,∴

,则,∴       

,   ∴二面角的大小为.        

20.解:(1) 由题意得,  ①, 

时,,解得

时,有  ②,

①式减去②式得,

于是,

因为,所以

所以数列是首项为,公差为的等差数列,

所以的通项公式为).

(2) 设存在满足条件的正整数,则

,…,,…,

所以,…,均满足条件,

它们组成首项为,公差为的等差数列.……(8分)

设共有个满足条件的正整数,则,解得.(10分)

所以,中满足条件的正整数存在,共有个,的最小值为.(12分)

21.(Ⅰ)法1:依题意,显然的斜率存在,可设直线的方程为

整理得 . ①

是方程①的两个不同的根,

,   ②

,由是线段的中点,得

,∴

解得,代入②得,的取值范围是(12,+∞).

于是,直线的方程为,即   

法2:设,则有

 

依题意,,∴

的中点,∴,从而

又由在椭圆内,∴

的取值范围是.    

直线的方程为,即.   

(2)  ∵垂直平分,∴直线的方程为,即

代入椭圆方程,整理得.  ③      

又设的中点为,则是方程③的两根,

到直线的距离

故所求的以线段的中点为圆心且与直线相切的圆的方程为:

 


同步练习册答案