如图4.已知椭圆C:的左.右焦点分别是F1.F2.M是椭圆C的上顶点.椭圆C的右准线与x轴交于点N.且..(Ⅰ)求椭圆C的标准方程, 查看更多

 

题目列表(包括答案和解析)

如图,已知椭圆C:的左、右焦点为F1、F2,其上顶点为A.已知△F1AF2是边长为2的正三角形.

(1)求椭圆C的方程;

(2)过点Q(-4,0)任作一直线l交椭圆C于M,N两

点,记=λ·.若在线段MN上取一点R,使得=-λ·,试判断当直线l运动时,点R是否在某一定直线上运动?若在,请求出该定直线的方程,若不在,请说明理由.

查看答案和解析>>

如图,已知椭圆C:
x2
b2
+
y2
a2
=1(a>b>0)
的左、右焦点分别为F1(0,c)、F2(0,-c)(c>0),抛物线P:x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点E在第一象限,与椭圆C相交于A、B两点,且
F2B
=λ
AF2

(1)求证:切线l的斜率为定值;
(2)若动点T满足:
ET
=μ(
EF1
+
EF2
),μ∈(0,
1
2
)
,且
ET
OT
的最小值为-
5
4
,求抛物线P的方程;
(3)当λ∈[2,4]时,求椭圆离心率e的取值范围.

查看答案和解析>>

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点为F1,F2,其上顶点为A.已知△F1AF2是边长为2的正三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(-4,0)任作一动直线l交椭圆C于M,N两点,记
MQ
=-λ•
QN
若在线段MN上取一点R,使得
MR
=λ•
RN
,试判断当直线l运动时,点R是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.

查看答案和解析>>

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点,右焦点分别为A、F,右准线为m.圆D:x2+y2+x-3y-2=0.
(1)若圆D过A、F两点,求椭圆C的方程;
(2)若直线m上不存在点Q,使△AFQ为等腰三角形,求椭圆离心率的取值范围.
(3)在(1)的条件下,若直线m与x轴的交点为K,将直线l绕K顺时针旋转
π
4
得直线l,动点P在直线l上,过P作圆D的两条切线,切点分别为M、N,求弦长MN的最小值.

查看答案和解析>>

如图,已知椭圆C:数学公式+数学公式=1(a>b>0)的左、右焦点为F1,F2,其上顶点为A.已知△F1AF2是边长为2的正三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(-4,0)任作一动直线l交椭圆C于M,N两点,记数学公式=-λ•数学公式若在线段MN上取一点R,使得数学公式=λ•数学公式,试判断当直线l运动时,点R是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空题:本大题共4个小题,每小题4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵

,∴,当且仅当时取"=".??????????? 8分

,∴,?????????????????????????????????????????? 10分

,当且仅当时取"=".

故△ABC面积取最大值为.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率;??????????????????????????????????????? 1分

②三次取球中有2次出现最大数字3的概率;???????????????????? 3分

③三次取球中仅有1次出现最大数字3的概率.????????????????? 5分

∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)在ξ=k时, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).???????? 8分

则ξ的概率分布列为:

ξ

1

2

3

4

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

∴ξ的数学期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

 

19.(Ⅰ)证明:∵四边形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等边三角形,设O是AA1的中点,连接BO,则BO⊥AA1. 2分

∵侧面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面积为,知C到AA1的距离为,∴△AA1C1是等边三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB两两垂直,以O为原点,建立如图空间直角坐标系,则.则.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

是平面ABC的一个法向量,

,则.设A1到平面ABC的距离为d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一个法向量是,又平面ACC1的一个法向量.   9分

.???????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ),对称轴方程为,故函数在[0,1]上为增函数,∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

时,.??????????????????????????????????????????????????????????????????????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????????????????????????????????????????? 4分

,∴数列是以为首项,为公比的等比数列.

,∴.?????????????????????????????????????????????????? 6分

(Ⅱ)∵,∴

???????????????????????????????????????????????????????? 7分

可知:当时,;当时,;当时,

?????????????????????????????????????????????????????????????????????????? 10分

可知存在正整数或6,使得对于任意的正整数n,都有成立.???????????? 12分

 

21.解:(Ⅰ)设

.∵

,∴,∴.??????????????????????????????????????????????????????????????? 2分

则N(c,0),M(0,c),所以

,则

∴椭圆的方程为.??????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)∵圆O与直线l相切,则,即,????????????????????????????????? 5分

消去y得

∵直线l与椭圆交于两个不同点,设

,???????????????????????????????????????????????????????????????? 7分

.?????????????????? 8分

.???????????????????????????????????????? 9分

(或).

,则

,则

时单调递增,????????????????????????????????????????????????????????????????????????? 11分

∴S关于μ在区间单调递增,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

(或

∴S关于u在区间单调递增,?????????????????????????????????????????????????????????????????????? 11分

.)????????????????????????????????????????????????????????? 12分

 

22.解:(Ⅰ)因为,则,     1分

时,;当时,

上单调递增;在上单调递减,

∴函数处取得极大值.????????????????????????????????????????????????????????????????????? 2分

∵函数在区间(其中)上存在极值,

解得.????????????????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)不等式,即为,?????????????????????????????????????????? 4分

,∴,??????? 5分

,则,∵,∴上递增,

,从而,故上也单调递增,

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

,????????????????????????????????????????????????????? 9分

………

,?????????????????????????????????????????????????????????????????????????????????? 10分

叠加得:

.???????????????????????????????????????????????????????????????????????? 12分

.????????????????????????????????????????????????????????????????????????? 14分

 

 

 

 

 

 

 

 

 

 


同步练习册答案