题目列表(包括答案和解析)
(本小题满分12分)二次函数
的图象经过三点
.![]()
(1)求函数
的解析式(2)求函数
在区间
上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:
;
(本小题满分12分)已知函数
,其中a为常数.
(Ⅰ)若当
恒成立,求a的取值范围;
(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为![]()
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知
是椭圆
的两个焦点,O为坐标原点,点
在椭圆上,且
,圆O是以
为直径的圆,直线
与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当
时,求弦长|AB|的取值范围.
一、选择题:本大题共12小题,每小题5分,共60分。
1―6AABCBD 7―12ACDCBD
二、填空题:本大题共4小题,每小题5分,共20分。
13.60° 14.-8 15.
16.6
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)
(I)解:因为
由正弦定理得
所以
又
故
5分
(II)由
故
10分
18.(本小题满分12分)
(I)解:当
故
1分
因为 当
当
故
上单调递减。
5分
(II)解:由题意知
上恒成立,
即
上恒成立。
7分
令
因为
9分
故
上恒成立等价于
11分
解得
12分
19.(本小题满分12分)
(I)证明:
2分
又
|