题目列表(包括答案和解析)
对任意实数
,定义运算
,其中
为常数,等号右边的运算是通常意义的加、乘运算.现已知
,且有一个非零实数
,使得对任意实数
,都有
,则
( )
A.2 B. 3 C.4 D.5
| A.2 | B.3 | C.4 | D.5 |
对任意实数x、y,定义运算
=ax+by+cxy,其中a、b、c为常数,等号右边的运算是通常意义的加、乘运算.现已知1*2=3,2*3=4,且有一个非零实数m,使得对任意实数x,都有
=x,则m=___________.
一、选择题
1~4 BBCA 5~8 ADCD
二、填空题
9、
10、
=
11、
12. 42
; 
13. 2或
14.
15. 
三、解答题
16(本小题满分12分)
1)
………………4分
2)当
单调递减,故所求区间为
………………8分
(3)
时
………………12分
17(本题满分14分)
解:(Ⅰ)由函数
的图象关于原点对称,得
,………1分
∴
,∴
. ………2分
∴
,∴
. ……………3分
∴
,即
. ………………5分
∴
. ……………………………6分
(Ⅱ)由(Ⅰ)知
,∴
.
由
,∴
. …………………8分








0
+
0


ㄋ
极小
ㄊ
极大
ㄋ
∴
. …………12分
18
证明:(I)在正
中,
是
的中点,所以
.
又
,
,
,所以
.
而
,所以
.所以由
,有
.
(II)取正
的底边
的中点
,连接
,则
.
又
,所以
.
如图,以点
为坐标原点,
为
轴,
为
轴,
建立空间直角坐标系.设
,则有
,
,
,
,
,
,
.再设
是面
的法向量,则有
,即
,可设
.
又
是面
的法向量,因此
,
所以
,即平面PAB与平面PDC所成二面角为
.
(Ⅲ)由(II)知
,设
与面
所成角为
,则
所以
与面
所成角的正弦值为
.
19(本题满分14分)

20解:(I)建立图示的坐标系,设椭圆方程为
依题意,


椭圆方程为
………………………………2分
F(-1,0)将x=-1代入椭圆方程得
∴当彗星位于太阳正上方时,二者在图中的距离为1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),
|