题目列表(包括答案和解析)
已知椭圆
的离心率
,长轴的左右端点分别为
,
.
(1)求椭圆
的方程;
(2)设动直线
与曲线
有且只有一个公共点
,且与直线
相交于点
.问在
轴上是否存在定点
,使得以
为直径的圆恒过定点
,若存在,求出
点坐标;若不存在,说明理由.
已知椭圆
的离心率
,长轴的左右端点分别为
,
.
(1)求椭圆
的方程;
(2)设动直线
与曲线
有且只有一个公共点
,且与直线
相交于点
.
求证:以
为直径的圆过定点
.
已知椭圆![]()
的离心率为
=
,椭圆
上的点
到两焦点的距离之和为12,点A、B分别是椭圆
长轴的左、右端点,点F是椭圆的右焦点.点
在椭圆上,且位于
轴的上方,
.
(I)
求椭圆
的方程;
(II)求点
的坐标;
(III)
设
是椭圆长轴AB上的一点,
到直线AP的距离等于
,求椭圆上的点到点
的距离
的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com