令由 查看更多

 

题目列表(包括答案和解析)

由原点O向曲线f(x)=x3-3ax2+x(a≠0)引切线,切点P1(x1,y1)异于O,再由点P1引此曲线的切线,切点P2(x2,y2)异于P1,如此继续下去,得到点列{Pn(xn,yn)}.

(1)求x1;

(2)求证:数列{xn-a}为等比数列;

(3)令bn=n|xn-a|,Tn为数列{bn}的前n项的和,若Tn>2对n∈N*恒成立,求a的取值范围.

查看答案和解析>>

A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<0),使得对任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
31+x
,x∈[2,4],证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;
(Ⅲ)设φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
①对任意x∈[1,2],都有φ(2x)∈(1,2) ;
②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|,
(Ⅰ)设,证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;
(Ⅲ)设φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,证明:给定正整数k,对任意的正整数p,成立不等式

查看答案和解析>>

A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:①对任意x∈[1,2],都有φ(2x)∈(1,2);②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.

(1)设φ(x)=,x∈[2,4],证明φ(x)∈A;

(2)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;

(3)设φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,证明给定正整数k,对任意的正整数p,成立不等式|xk+p-xk|≤|x2-x1|.

查看答案和解析>>

20.

A是由定义在[2,4]上且满足如下条件的函数(x)组成的集合:①对任意的都有(2x);②存在常数L(0<L<1),使得对任意的x1,x2[1,2],都有|(2x1)- (2 x2)|.

(Ⅰ)设(x)=证明:(x)A:

(Ⅱ)设(x),如果存在x0(1,2),使得x0=(2x0),那么这样的x0是唯一的:

(Ⅲ)设任取x1(1,2),令xn+1=(2xn),n=1,2……证明:给定正整数k,对任意的正整数p,成立不等式Equation.3

查看答案和解析>>


同步练习册答案