题目列表(包括答案和解析)
(本小题满分12分)某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示.假设两项培训是相互独立的,结业考试也互不影响。
![]()
| 年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
| [20,30) | 30 | 18 |
| [30,40) | 36 | 24 |
| [40,50) | 12 | 9 |
| [50,60] | 4 | 3 |
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,求这两人中至少有一人在A、B两项培训结业考试成绩为优秀的概率。
(本小题满分12分)某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示.假设两项培训是相互独立的,结业考试也互不影响。
![]()
| 年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
| [20,30) | 30 | 18 |
| [30,40) | 36 | 24 |
| [40,50) | 12 | 9 |
| [50,60] | 4 | 3 |
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望。
(本小题满分12分)某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示.假设两项培训是相互独立的,结业考试也互不影响。
![]()
| 年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
| [20,30) | 30 | 18 |
| [30,40) | 36 | 24 |
| [40,50) | 12 | 9 |
| [50,60] | 4 | 3 |
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,求这两人中至少有一人在A、B两项培训结业考试成绩为优秀的概率。
(本小题满分12分)某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示.假设两项培训是相互独立的,结业考试也互不影响。
![]()
| 年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
| [20,30) | 30 | 18 |
| [30,40) | 36 | 24 |
| [40,50) | 12 | 9 |
| [50,60] | 4 | 3 |
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望。
(本小题满分14分)
某工厂生产一种产品的成本费由三部分组成:
① 职工工资固定支出
元;② 原材料费每件40元;
③ 电力与机器保养等费用为每件
元,其中
是该厂生产这种产品的总件数.
(1)把每件产品的成本费
(元)表示成产品件数
的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量
不超过
件,且产品能全部销售.根据市场调查:每件产品的销售价
与产品件数
有如下关系:
,试问生产多少件产品,总利润最高?(总利润=总销售额—总的成本)
1. -
2.
3.
4.

5.
6.
或
7. ④
8. 
9.
10. (2,4] 11. (28,44) 12. 
13. 5 14. m>
15.(1)【证明】∵△PAB中, D为AB中点,M为PB中点,∴
∵DM
平面
,PA
平面
,∴
平面
……3分
(2)【证明】∵D是AB的中点,△PDB是正三角形,AB=20,
∴
……4分
∴△PAB是直角三角形,且AP⊥PB,……5分
又∵AP⊥PC,
……6分
∴AP⊥平面PBC.∴AP⊥BC.……8分
又∵AC⊥BC, AP∩AC=A,∴BC⊥平面PAC.……9分
∵
∴平面PAC⊥平面ABC.……10分
(3)【解】由(1)知
,由(2)知PA⊥平面PBC,
∴DM⊥平面PBC.……11分
∵正三角形PDB中易求得
,
……13分
∴
……14分
16.解:(Ⅰ)∵
………………………………………………………………4分
又∵
……………………………………6分
即 
∴ymax=5, ymin=3 …………………………………………………………………8分
(Ⅱ)∵
……………………………10分
又∵P为q的充分条件 ∴ 
………………………………………13分
解得 3<m<5 ……………………………………………………………………14分
17. 解:(1)由题意知,需加工G型装置4000个,加工H型装置3000个,所用工人分别为x人,(216-x)人.
∴g(x)=
,h(x)=
,
即g(x)=
,h(x)=
(0<x<216,x∈N*). ……………………4分
(2)g(x)-h(x)=
-
=
.
∵0<x<216,
∴216-x>0.
当0<x≤86时,432-5x>0,g(x)-h(x)>0,g(x)>h(x);
当87≤x<216时,432-5x<0,g(x)-h(x)<0,g(x)<h(x).
∴f(x)=
……………………8分
(3)完成总任务所用时间最少即求f(x)的最小值.
当0<x≤86时,f(x)递减,
∴f(x)≥f(86)=
=
.
∴f(x)min=f(86),此时216-x=130.
当87≤x<216时,f(x)递增,
∴f(x)≥f(87)=
=
.
∴f(x)min=f(87),此时216-x=129.
∴f(x)min=f(86)=f(87)=
.
∴加工G型装置,H型装置的人数分别为86、130或87、129……………………14分
18. (Ⅰ)由题设知
由于
,则有
,所以点
的坐标为
……..2分
故
所在直线方程为
…………3分
所以坐标原点
到直线
的距离为
又
,所以
解得:
…………5分
所求椭圆的方程为
…………6分
(Ⅱ)由题意可知直线
的斜率存在,设直线斜率为
直线
的方程为
,则有
…………8分
设
,由于
、
、
三点共线,且
根据题意得
,解得
或
…………14分
又
在椭圆
上,故
或
解得
,综上,直线
的斜率为
或
…………16分
19. 解:(1)由已知,
(
,
),
即
(
,
),且
.
∴数列
是以
为首项,公差为1的等差数列.
∴
.
∴
恒成立,
∴
恒成立,
(?)当
为奇数时,即
恒成立,
当且仅当
时,
有最小值为1,
∴
.
当且仅当
时,
有最大值
,
∴
.
即
,又
为非零整数,则
.
综上所述,存在
,使得对任意
,都有
.
20.解:(I)
2分
由
得,
或
而
,列出下表


0




―
0
+
0
―

递减
极小值
递增
极大值
递减
所以,当
时,
取得极小值,极小值等于
;
当
时,
取得极大值,极大值等于
;
6分
(II)设函数
、
, 不妨设

(注:若直接用
来证明至少扣1分)
10分
(III)
时,


16分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com