题目列表(包括答案和解析)
如图4—15所示,T为理想变压器,A1、A2为交流电流表,R1、R2为定值电阻,R3为滑动变阻器,原线圈两端接恒压交流电源,当滑变阻器的滑动触头向下滑动时( )
A.A1的读数变大,A2读数变大
B.A1的读数变大,A2读数变小
C.A1的读数变小,A2读数变大
D.A1的读数变小,A2的读数变小
![]()
![]()
图
A.A1的读数变大,A2读数变大 B.A1的读数变大,A2读数变小
C.A1的读数变小,A2读数变大 D.A1的读数变小,A2的读数变小
(1)如图所示,abcd为单匝矩形线圈,边长ab=10 cm,bc=20 cm.该线圈的一半位于具有理想边界、磁感应强度为0.1T、宽为20 cm的匀强磁场中,磁场方向与线圈平面垂直.若线圈绕通过ab边的轴以100p rad/s的角速度匀速旋转,当线圈由图示位置转过90° 时的瞬时感应电动势大小为________V.
(2)某同学利用如图甲所示的实验装置验证机械能守恒定律.
(Ⅰ)请指出该同学在实验操作中存在的两处明显错误或不当:
①________;
②________.
(Ⅱ)该同学经正确操作得到如图乙所示的纸带,取连续的六个点A、B、C、D、E、F为计数点,测得点A到B、C、D、E、F的距离分别为h1、h2、h3、h4、h5,若打点的时间间隔为T,则打E点时重物速度的表达式为vE=________.
![]()
(3)冬、春季节降水量少,广东沿海附近水位较低,涨潮时海水倒灌出现所谓咸潮现象,使沿海地区的城市自来水中的离子浓度较高,水质受到影响,为了研究咸潮出现的规律,某同学设计了一个监测河水电阻率的实验.它在一根均匀的长玻璃管两端装上两个橡胶塞和铂电极,如下图(1)所示,两电极相距L=0.314 m,其间充满待测的河水.安装前他用如下图(2)的游标卡尺(图为卡尺的背面)测量玻璃管的内径,结果如下图(3)所示.
![]()
![]()
他还选用了以下仪器:量程15 V、内阻300 kΩ的电压表,量程300μA、内阻50 Ω的电流表,最大阻值为1 kΩ的滑动变阻器,电动势E=12 V、内阻r=6Ω的电池组,开关等各一个,以及导线若干.下图(4)坐标中包括坐标为(0,0)的点在内的9个点表示他测得的9组电流I、电压U的值.
![]()
根据以上材料完成以下问题:
(a)测量玻璃管内径时,应将上图(2)中的游标卡尺的A、B、C三部分中的________与玻璃管内壁接触(填代号);
(b)玻璃管的内径d=________mm;
(c)图(4)中的9个点表示实验中测得的9组电流I、电压U的值,试写出根据此图求R值的步骤:________.
(d)上图(5)中的实物仪器部分已连线,将其他部分连接成能测出上图(4)数据的实物连接图;
(e)开头闭合前滑动变阻器的滑片应先滑至________端.
| 弹簧劲度系数 | k | 2k | 3k | 4k | 5k | 6k |
| V (m/s) | 0.71 | 1.00 | 1.22 | 1.41 | 1.58 | 1.73 |
| V2 (m2/s2) | 0.50 | 1.00 | 1.49 | 1.99 | 2.49 | 2.99 |
| V3 (m3/s3) | 0.36 | 1.00 | 1.82 | 2.80 | 3.94 | 5.18 |
| U/V | 2.0 | 3.8 | 6.8 | 8.0 | 10.2 | 11.6 |
| I/mA | 0.73 | 1.36 | 2.20 | 2.89 | 3.66 | 4.15 |
第七部分 热学
热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。
一、分子动理论
1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)
对于分子(单原子分子)间距的计算,气体和液体可直接用
,对固体,则与分子的空间排列(晶体的点阵)有关。
![]()
【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。
【解说】题意所求即图中任意一个小立方块的变长(设为a)的
倍,所以求a成为本题的焦点。
由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v = ![]()
而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,
即 a3 =
=
,最后,邻近钠离子之间的距离l =
a
【答案】3.97×10-10m 。
〖思考〗本题还有没有其它思路?
〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有
×8个离子 =
分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)
2、物质内的分子永不停息地作无规则运动
固体分子在平衡位置附近做微小振动(振幅数量级为0.1
),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。
无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。
![]()
气体分子的三种速率。最可几速率vP :f(v) =
(其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP =
=
;平均速率
:所有分子速率的算术平均值,
=
=
;方均根速率
:与分子平均动能密切相关的一个速率,
=
=
〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =
= 1.38×10-23J/K 〕
【例题2】证明理想气体的压强P =
n
,其中n为分子数密度,
为气体分子平均动能。
![]()
【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。
考查yoz平面的一个容器壁,P =
①
设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力
F =
=
②
在气体的实际状况中,如何寻求Nx和vx呢?
考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足
v2 =
+
+ ![]()
分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即
=
+
+
= 3
③
这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt =
,则
Nx =
·3N总 =
na3 ④
注意,这里的
是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。
![]()
结合①②③④式不难证明题设结论。
〖思考〗此题有没有更简便的处理方法?
〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =
N总 =
na3 ;而且vx = v
所以,P =
=
=
=
nm
=
n![]()
3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。
分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。
分子势能和动能的总和称为物体的内能。
二、热现象和基本热力学定律
1、平衡态、状态参量
a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。
b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。
c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。
2、温度
a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F =
t + 32)和热力学温标T(T = t + 273.15)。
b、(理想)气体温度的微观解释:
=
kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。
c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)
3、热力学过程
a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = K
SΔ
典型例题
[例1] 解析:对系统进行整体分析,受力分析如图1―2:
由平衡条件有:

由此解得

[例2] 解析: (1)设t1、t2为声源S发出两个信号的时刻,
为观察者接收到两个信号的时刻.则第一个信号经过
时间被观察者A接收到,第二个信号经过(
)时刻被观察者A接收到,且

![]() |
|||
![]() |
|||
设声源发出第一个信号时,S、A两点间的距离为L,两个声信号从声源传播到观察者的过程中,它们的运动的距离关系如图所示,
可得
由以上各式解得
(2)设声源发出声波的振动周期为T,这样,由以上结论,观察者接收到的声波振动的周期T′,
.
由此可得,观察者接收到的声波频率与声源发出声波频率间的关系为
.
[例3] 解答:根据题意作图1―4.
对这两个天体而言,它们的运动方程分别为
①
②
以及
③
由以上三式解得
.
将r1和r2的表达式分别代①和②式,
可得
.

[例4] 解答:(1)A、B两球以相同的初速度v0,从同一点水平抛出,可以肯定它们沿同一轨道运动.
作细线刚被拉直时刻A、B球位置示意图1―5.
根据题意可知:


设A球运动时间为t,则B球运动时间为t-0.8,由于A、B球在竖直方向上均作自由落体运动,所以有
.
由此解得t =1s.
(2)细线刚被拉直时,
A、B球的水平位移分别为
[例5] 解答:(1)A球通过最低点时,作用于环形圆管的压力竖直向下,根据牛顿第三定律,A球受到竖直向上的支持力N1,由牛顿第二定律,有:
①
由题意知,A球通过最低点时,B球恰好通过最高点,而且该时刻A、B两球作用于圆管的合力为零;可见B球作用于圆管的压力肯定竖直向上,根据牛顿第三定律,圆管对B球的反作用力N2竖直向下;假设B球通过最高点时的速度为v,则B球在该时刻的运动方程为
②
由题意N1=N2 ③
∴
④
对B球运用机械能守恒定律
⑤
解得
⑥
⑥式代入④式可得:
.
[例6] 解答:火箭上升到最高点的运动分为两个阶段:匀加速上升阶段和竖直上抛阶段.
地面上的摆钟对两个阶段的计时为

即总的读数(计时)为t =t1+t2=360(s)
放在火箭中的摆钟也分两个阶段计时.
第一阶段匀加速上升,a=8g,钟摆周期
其钟面指示时间
第二阶段竖直上抛,为匀减速直线运动,加速度竖直向下,a=g,完全失重,摆钟不“走”,计时
.可见放在火箭中的摆钟总计时为
.
综上所述,火箭中的摆钟比地面上的摆钟读数少了
.
[例7] 解答:在情形(1)中,滑块相对于桌面以速度v0=0.1m/s向右做匀速运动,放手后,木板由静止开始向右做匀加速运动.
经时间t,木板的速度增大到v0=0.1m/s,
.
在5s内滑块相对于桌面向右的位移大小为S1=v0t=0.5m.
而木板向右相对于桌面的位移为
.
可见,滑块在木板上向右只滑行了S1-S2=0.25m,即达到相对静止状态,随后,它们一起以共同速度v0向右做匀速直线运动.只要线足够长,桌上的柱子不阻挡它们运动,滑块就到不了木板的右端.
在情形(2)中,滑块与木板组成一个系统,放手后滑块相树于木板的速度仍为v0,滑块到达木板右端历时
.
[例8] 解答:以m表示球的质量,F表示两球相互作用的恒定斥力,l表示两球间的原始距离.A球作初速度为v0的匀减速运动,B球作初速度为零的匀加速运动.在两球间距由l先减小,到又恢复到l的过程中,A球的运动路程为l1,B球运动路程为l2,间距恢复到l时,A球速度为v1,B球速度为v2.
由动量守恒,有
由功能关系:A球
B球:
根据题意可知l1=l2,
由上三式可得
得v2=v0、v1=0 即两球交换速度.
当两球速度相同时,两球间距最小,设两球速度相等时的速度为v,
则
B球的速度由
增加到v0花时间t0,即
得
.
解二:用牛顿第二定律和运动学公式.(略)
跟踪练习
1.C 提示:利用平衡条件.
2.(1)重物先向下做加速运动,后做减速运动,当重物速度为零时,下降的距离最大,设下降的最大距离为h,
由机械能守恒定律得
解得
.
(2)系统处于平衡状态时,两小环的可能位置为
a.两小环同时位于大圆环的底端
b.两小环同时位于大圆环的顶端
c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端
d.除上述三种情况外,根据对称性可知,系统如能平衡,则小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧
角的位置上(如图).
对于重物m,受绳的拉力T与重力mg作用,有T=mg.对于小圆环,受到三个力的作用,水平绳的拉力T,竖直绳的拉力T,大圆环的支持力N.两绳的拉力沿大圆环切向的分力大小相等,方向相反
.
得
.
3.设测速仪扫描速度为v′,因P1、P2在标尺上对应间隔为30小格,所以
格/s.
测速仪发出超声波信号P1到接收P1的反射信号n1.从图B上可以看出,测速仪扫描12小格,所以测速仪从发出信号P1到接收其反射信号n1所经历时间
.
汽车接收到P1信号时与测速仪相距
.
同理,测速仪从发出信号P2到接收到其反射信号n2,测速仪扫描9小格,故所经历时间
.汽车在接收到P2信号时与测速仪相距
.
所以,汽车在接收到P1、P2两个信号的时间内前进的距离△S=S1-S2=17m.
从图B可以看出,n1与P2之间有18小格,所以,测速仪从接收反射信号n1到超声信号P2的时间间隔
.
所以汽车接收P1、P2两个信号之间的时间间隔为
.
∴汽车速度
m/s.
4.从B发出第一个超声波开始计时,经
被C车接收.故C车第一次接收超声波时与B距离
.
第二个超声波从发出至接收,经T+△T时间,C车第二车接收超声波时距B为
,C车从接收第一个超声波到接收第二个超声波内前进S2-S1,接收第一个超声波时刻
,接收第二个超声波时刻为
.
所以接收第一和第二个超声波的时间间距为
.
故车速
.车向右运动.
5.ACD
6.(1)根据动能定理,可求出卫星由近地点到远地点运动过程中,地球引力对卫星的功为
.
(2)由牛顿第二定律知
∴
7.(1)建立如图所示坐标系,将v0与g进行正交分解.

在x方向,小球以
为初速度作匀加速运动.
在y方向,小球以
为初速度,作类竖直上抛运动.
当y方向的速度为零时,小球离斜面最远,由运动学公式
.
小球经时间t上升到最大高度,由
得
.
(2)

8.(1)设滑雪者质量为m,斜面与水平面夹角为
,滑雪者滑行过程中克服摩擦力做功
①
由动能定理
②
离开B点时的速度
③
(2)设滑雪者离开B点后落在台阶上
可解得
④
此时必须满足
⑤
当
时,滑雪者直接落到地面上,
,
可解得
.
9.AC
10.摆球先后以正方形的顶点为圆心,半径分别为R1=4a,R2=3a,R3=2a,R4=a为半径各作四分之一圆周的圆运动.
当摆球从P点开始,沿半径R1=4a运动到最低点时的速度v1,
根据动量定理
①
当摆球开始以v1绕B点以半径R2=3a作圆周运动时,摆线拉力最大,为Tmax=7mg,这时摆球的运动方程为
②
由此求得v0的最大许可值为
.
当摆球绕C点以半径R3=2a运动到最高点时,为确保沿圆周运动,
到达最高点时的速度
(重力作向心力)
由动能定理
∴
11.B
12.由题意知,周期为
.波速
.
P、Q两点距离相差
次全振动所需时间即
∴
.
13.ABC 开始时小车上的物体受弹簧水平向右的拉力为6N,水平向左的静摩擦力也为6N,合力为零.沿水平向右方向对小车施加以作用力,小车向右做加速运动时,车上的物体沿水平向右方向上的合力(F=ma)逐渐增大到8N后恒定.在此过程中向左的静摩擦力先减小,改变方向后逐渐增大到(向右的)2N而保持恒定;弹簧的拉力(大小、方向)始终没有变,物体与小车保持相对静止,小车上的物体不受摩擦力作用时,向右的加速度由弹簧的拉力提供:
.
14.(1)设物体与板的位移分别为S物、S板,则由题意有
①
② 解得:
.
(2)由
.

得
,故板与桌面之间的动摩擦因数
.
15.在0~10s内,物体的加速度
(正向)
在10~14s内,物体的加速度
(反向)
由牛顿第二定律
①
②
由此解得F=8.4N
=0.34
16.(1)依题意得
=0,设小滑块在水平面上运动的加速度大小为a,
由牛顿第二定律,
,由运动学公式
,解得
.
(2)滑块在水平面上运动时间为t1,由
.
在斜面上运动的时间
(3)若滑块在A点速度为v1=5m/s,则运动到B点的速度
.
即运动到B点后,小滑块将做平抛运动.
假设小滑块不会落到斜面上,则经过
落到水平面上,
则水平位移
.
所以假设正确,即小滑块从A点运动到地面所需时间为
.
专题二 动量与机械能
典型例题
[例1] D
解析:本题辨析一对平衡力和一对作用力和反作用力的功、冲量.因为,一对平衡力大小相等、方向相反,作用在同一物体上,所以,同一段时间内,它们的冲量大小相等、方向相反,故不是相同的冲量,则①错误.如果在同一段时间内,一对平衡力做功,要么均为零(静止),要么大小相等符号相反(正功与负功),故②正确.至于一对作用力与反作用力,虽然两者大小相等,方向相反,但分别作用在两个不同物体上(对方物体),所以,即使在同样时间内,力的作用点的位移不是一定相等的(子弹穿木块中的一对摩擦力),则做功大小不一定相等.而且作功的正负号也不一定相反(点电荷间相互作用力、磁体间相互作用力的做功,都是同时做正功,或同时做负功.)因此③错误,④正确.综上所述,选项D正确.
【例2】 解析:(1)飞机达到最大速度时牵引力F与其所受阻力f 大小相等,
由P=Fv得
(2)航空母舰上飞机跑道的最小长度为s,由动能定理得
将
代入上式得
或
【例3】 解析:解法1(程序法):
选物体为研究对象,在t1时间内其受力情况如图①所示,选F的方向为正方向,根据牛顿第二定律,物体运动的加速度为
.
![]() |
撤去F时物体的速度为v1=a1t1=2×6m/s=12m/s
撤去F后,物体做匀减速运动,其受力情况如图②所示,根据牛顿第二定律,其运动的加速度为
.
物体开始碰撞时的速度为v2=v1+a2t2=[12+(-2)×2]m/s=8m/s.
再研究物体碰撞的过程,设竖直墙对物体的平均作用力为
,其方向水平向左.若选水平向左为正方向,根据动量定理有
.
解得
.
解法2(全程考虑):取从物体开始运动到碰撞后反向弹回的全过程应用动量定理,并取F的方向为正方向,则
所以
点评:比较上述两种方法看出,当物体所受各力的作用时间不相同且间断作用时,应用动量定理解题对全程列式较简单,这时定理中的合外力的冲量可理解为整个运动过程中各力冲量的矢量和.此题应用牛顿第二定律和运动学公式较繁琐.
另外有些变力作用或曲线运动的题目用牛顿定律难以解决,应用动量定理解决可化难为易.
【例4】 解析:该题用守恒观点和转化观点分别解答如下:
解法一:(守恒观点)选小球为研究对象,设小球沿半径为R的轨道做匀速圆周运动的线速度为v0,根据牛顿第二定律有
①
当剪断两物体之间的轻线后,轻线对小球的拉力减小,不足以维持小球在半径为R的轨道上继续做匀速圆周运动,于是小球沿切线方向逐渐偏离原来的轨道,同时轻线下端的物体m1逐渐上升,且小球的线速度逐渐减小.假设物体m1上升高度为h,小球的线速度减为v时,小球在半径为(R+h)的轨道上再次做匀速圆周运动,根据牛顿第二定律有
②
再选小球M、物体m1与地球组所的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于只有重力做功,所以系统的机械能守恒.选小球做匀速圆周运动的水平面为零势面,设小球沿半径为R的轨道做匀速圆周运动时m1到水平板的距离为H,根据机械能守恒定律有
③
以上三式联立解得 
解法二:(转化观点)与解法一相同,首先列出①②两式,然后再选小球、物体m1与地球组成的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于系统的机械能守恒,所以小球动能的减少量等于物体m1重力势能的增加量.即
④
①、②、④式联立解得 
点评:比较上述两种解法可以看出,根据机械能守恒定律应用守恒观点列方程时,需要选零势面和找出物体与零势面的高度差,比较麻烦;如果应用转化观点列方程,则无需选零势面,往往显得简捷.
【例5】 解析:(1)第一颗子弹射入木块过程中动量守恒
①
解得:
=3m/s ②
木块向右作减速运动加速度
m/s2 ③
木块速度减小为零所用时间
④
解得t1 =0.6s<1s ⑤
所以木块在被第二颗子弹击中前向右运动离A点最远时,速度为零,移动距离为
解得s1=0.9m. ⑥
(2)在第二颗子弹射中木块前,木块再向左作加速运动,时间t2=1s-0.6s=0.4s ⑦
速度增大为v2=at2=2m/s(恰与传送带同速) ⑧
向左移动的位移为
⑨
所以两颗子弹射中木块的时间间隔内,木块总位移S0=S1-S2=0.5m方向向右 ⑩
第16颗子弹击中前,木块向右移动的位移为
11
第16颗子弹击中后,木块将会再向右先移动0.9m,总位移为0.9m+7.5=8.4m>8.3m木块将从B端落下.
所以木块在传送带上最多能被16颗子弹击中.
(3)第一颗子弹击穿木块过程中产生的热量为
12
木块向右减速运动过程中板对传送带的位移为
13
产生的热量为Q2=
14
木块向左加速运动过程中相对传送带的位移为
15
产生的热量为
16
第16颗子弹射入后木块滑行时间为t3有
17
解得t3=0.4s 18
木块与传送带的相对位移为S=v1t3+0.8 19
产生的热量为Q4=
20
全过程中产生的热量为Q=15(Q1+Q2+Q3)+Q1+Q4
解得Q=14155.5J 21
【例6】 解析:运动分析:当小车被挡住时,物体落在小车上沿曲面向下滑动,对小车有斜向下方的压力,由于P的作用小车处于静止状态,物体离开小车时速度为v1,最终平抛落地,当去掉挡板,由于物对车的作用,小车将向左加速运动,动能增大,物体相对车滑动的同时,随车一起向左移动,整个过程机械能守恒,物体滑离小车时的动能将比在前一种情况下小,最终平抛落地,小车同时向前运动,所求距离是物体平抛过程中的水平位移与小车位移的和.求出此种情况下,物体离开车时的速度v2,及此时车的速度
以及相应运动的时间是关键,由于在物体与小车相互作用过程中水平方向动量守恒这是解决v2、
间关系的具体方法.
(1)挡住小车时,求物体滑落时的速度v1,物体从最高点下落至滑离小车时机械能守恒,设车尾部(右端)离地面高为h,则有
, ①
由平抛运动的规律s0=v1t ②
. ③
(2)设去掉挡板时物体离开小车时速度为v2,小车速度为
,物体从最高点至离开小车之时系统机械能守恒
④
物体与小车相互作用过程中水平方向动量守恒
. ⑤
此式不仅给出了v2与
大小的关系,同时也说明了v2是向右的.
物体离开车后对地平抛
⑥
⑦
车在
时间内向前的位移
⑧
比较式⑦、③,得
解式①、④、⑤,得
.
此种情况下落地点距车右端的距离
.
点评:此题解题过程运用了机械能守恒、动量守恒及平抛运动的知识,另外根据动量守恒判断m离车时速度的方向及速度间的关系也是特别重要的.
【例7】 解析:(1)设第一次碰墙壁后,平板车向左移动s,速度为0.由于体系总动量向右,平板车速度为零时,滑块还在向右滑行.
由动能定理
①
②
代入数据得
③
(3)假如平板车在第二次碰撞前还未和滑块相对静止,那么其速度的大小肯定还是2m/s,滑块的速度则大于2m/s,方向均向右.这样就违反动量守恒.所以平板车在第二次碰撞前肯定已和滑块具有共同速度v.此即平板车碰墙前瞬间的速度.
④
∴
⑤
代入数据得
⑥
(3)平板车与墙壁第一次碰撞后到滑块与平板又达到共同速度v前的过程,可用图(a)(b)(c)表示.(a)为平板车与墙壁撞后瞬间滑块与平板车的位置,图(b)为平板车到达最左端时两者的位置,图(c)为平板车与滑块再次达到共同速度为两者的位置.在此过程中滑块动能减少等于摩擦力对滑块所做功
,平板车动能减少等于摩擦力对平板车所做功
(平板车从B到A再回到B的过程中摩擦力做功为零),其中
、
分别为滑块和平板车的位移.滑块和平板车动能总减少为
其中
为滑块相对平板车的位移.此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为l,则有
⑦
⑧
代入数据得
⑨
l即为平板车的最短长度.
【例8】 解析:本题应用动量守恒,机械能守恒及能量守恒定律联合求解。
在m下落在砂箱砂里的过程中,由于车与小泥球m在水平方向不受任何外力作用,故车及砂、泥球整个系统的水平方向动量守恒,则有:
①
此时物块A由于不受外力作用,继续向右做匀速直线运动再与轻弹簧相碰,以物块A、弹簧、车系统为研究对象,水平方向仍未受任何外力作用,系统动量守恒,当弹簧被压缩到最短,达最大弹性势能Ep时,整个系统的速度为v2,则由动量守恒和机械能守恒有:
②
③
由①②③式联立解得:
④
之后物块A相对地面仍向右做变减速运动,而相对车则向车的左面运动,直到脱离弹簧,获得对车向左的动能,设刚滑至车尾,则相对车静止,由能量守恒,弹性势能转化为系统克服摩擦力做功转化的内能有:
⑤
由④⑤两式得:
跟踪练习
1.【答案】 D
【解析】 在△t1时间内,I1=F△t1=mv=△p1,在△t2时间内.I2=F△t2=2mv-mv=mv=△p2 ∴I1=I2
又
∴W1<W2,D选项正确.
【说明】 物体在恒定的合外力F作用下做直线运动,由牛顿第二定律可知物体做匀加速直线运动,速度由零增大到v的时间△t2和由v增大到2v的时间△t2是相等的,所以在△t1和△t2的两段时间内合外力的冲量是相等的.在△t1的平均速度小于△t2时间内的平均速度,从而得出在△t1内的位移小于在△t2时间的位移,恒力F所做的功W1<W2.D选项正确.
2.【答案】 C
【解析】 无论子弹射入的深度如何,最终子弹和木块都等速,由动量守恒定律知,两种情况最终两木块(包括子弹)速度都相等.对木块由动能定理知:两次子弹对木块做功一样多.由动量定理知:两次木块所受冲量一样大.对系统由能的转化和守恒定律知,两次损失的机械能一样多,产生的热量也一样多.
3.【解析】 (1)物体由A滑到B的过程中,容器不脱离墙,物块由B沿球面向上滑时,物块对容器的作用力有一水平向右的分量,容器将脱离墙向右运动.因此,物块由A→B动量变化量最大,受容器的冲量最大,竖直墙作用于容器的冲量也最大.
物块由A→B机械能守恒,设物块滑到B的速度为vB,则
∴
①
物块动量变化量
方向沿水平方向.容器作用于物块的冲量为
.
容器不动,墙对容器的冲量
,方向水平向右,这是最大冲量.
(2)物块从B处上升,容器向右运动过程中,系统水平方向动量守恒.物块上升到最高处相对容器静止的时刻,物块与容器具有共同的水平速度,设它为v,则由动量守恒定律得
②
系统机械能守恒
③
联立①②③式解得 M=3m
4.【解析】 设离子喷出尾喷管时的速度为v,单位时间内喷出n个离子,则△t时间内喷出离子数为n△t,由动量定理得
在发射离子过程中,卫星和发射出的离子系统,动量守恒,设喷出离子总质量为△m,则有△mv=(M-△m)v星 ∵△m
m ∴v
.


5.【解析】 (1)设整个过程摩擦力做的功是W,由动能定理得:mgh-W=0 ①
W=mgh
(2)设物块沿轨道AB滑动的加速度为a1,
由牛顿第二定律有
②
设物块到达B点时的速度为VB,则有VB=a1t1 ③
设物块沿轨道BC滑动的加速度为a2,由牛顿第二定律有
④
物块从B点开始作匀减速运动,到达C点时,速度为零,故有
⑤
由②③④⑤式可得:
⑥
(3)使物块匀速地、缓慢地沿原路回到A点所需做的功应该是克服重力和阻力所做功之和,即是W1=mgh+W=2mgh
6.【解析】 (1)物体P从A下滑经B到C过程中根据动能定理:


经C点时
根据牛顿第三定律,P对C点的压力
(2)从C到E机械能守恒
E与D间高度差
(3)物体P最后在B与其等高的圆弧轨道上来回运动时,经C点压力最小,由B到C根据机械能守恒


根据牛顿第三定律 压力
7.【解析】 物块的运动可分为以下四个阶段:①弹簧弹力做功阶段;②离开弹簧后在AB段的匀速直线运动阶段;③从B到C所进行的变速圆周运动阶段;④离开C点后进行的平抛运动阶段.弹簧弹力是变化的,求弹簧弹力的功可根据效果――在弹力作用下物块获得的机械能,即到达B点的动能求解.物块从B至C克服阻力做的功也是变力,同样只能根据B点和C点两点的机械能之差判断.因此求出物块在B点和C点的动能是关键.可根据题设条件:“进入导轨瞬间对导轨的压力为其重力的7倍”、“恰能到达C点”,求出
.
物块在B点时受力mg和导轨的支持力N=7mg,由牛顿第二定律,
有
∴
物块到达C点仅受重力mg,根据牛顿第二定律,有
∴
.
(1)根据动能定理,可求得弹簧弹力对物体所做的功为W弹=EkB=3mgR.
(2)物体从B到C只有重力和阻力做功,根据动能定理,
有

即物体从B到C克服阻力做的功为0.5mgR.
(3)物体离开轨道后做平抛运动,仅有重力做功,机械能守恒,
有
.
评析:中学阶段不要求直接用
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com