若f(x)的值域为,则实数a的取值范围 . 查看更多

 

题目列表(包括答案和解析)

函数f(x)=的定义域为A,函数g(x)=的定义域为B,若A∩B=,则实数a的取值范围是

[  ]

A.-2≤a≤-1
B.-2<a<-1
C.1≤a≤2
D.1<a<2

查看答案和解析>>

函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(MD),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是

[  ]

A.0<a<1.

B.-2<a<2

C.-1≤a≤1

D.-2≤a≤2

查看答案和解析>>

定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b∈[a,b],已知向量
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k
恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x-
1
x
在[1,2]上“k阶线性近似”,则实数k的取值范围为(  )
A、[0,+∞)
B、[
1
12
,+∞)
C、[
3
2
+
2
,+∞)
D、[
3
2
-
2
,+∞)

查看答案和解析>>

已知f(x)=log
12
(x2-2ax+3)

(1)若函数的定义域为R则实数a的取值范围是
 

(2)若函数的值域为R则实数a的取值范围是
 

(3)若函数在(-∞,1]上有意义则实数a的取值范围是
 

(4)若函数的值域为(-∞,1)则实数a的取值范围是
 

查看答案和解析>>

已知f(x)=loga
x+1x-1
(a>0且a≠1).
(1)判断函数f(x)的奇偶性,并证明;
(2)若a>1,用单调性定义证明函数f(x)在区间(1,+∞)上单调递减;
(3)是否存在实数a,使得f(x)的定义域为[m,n]时,值域为[1-logan,1-logam],若存在,求出实数a的取值范围;若不存在,则说明理由.

查看答案和解析>>


同步练习册答案