题目列表(包括答案和解析)
山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(Ⅰ)请估计一下这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.
![]()
【解析】本试题主要考查了概率的运算和统计图的运用。
(1)由由频率分布直方图可知:50~60分的频率为0.1, 60~70分的频率为0.25, 70~80分的频率为0.45, 80~90分的频率为0.15, 90~100分的频率为0.05,然后利用平均值公式,可知这组数据的平均数M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)
(2)中利用90~100分数段的人数为2人,频率为0.05;得到总参赛人数为40,然后得到0~60分数段的人数为40×0.1=4人,第五组中有2人,这样可以得到基本事件空间为15种,然后利用其中两人成绩差大于20的选法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8种,得到概率值
解:(Ⅰ)由频率分布直方图可知:50~60分的频率为0.1, 60~70分的频率为0.25, 70~80分的频率为0.45, 80~90分的频率为0.15, 90~100分的频率为0.05; ……………2分
∴这组数据的平均数M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…4分
(Ⅱ)∵90~100分数段的人数为2人,频率为0.05;
∴参加测试的总人数为
=40人,……………………………………5分
∴50~60分数段的人数为40×0.1=4人, …………………………6分
设第一组50~60分数段的同学为A1,A2,A3,A4;第五组90~100分数段的同学为B1,B2
则从中选出两人的选法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种;其中两人成绩差大于20的选法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8种 …………………………11分
则选出的两人为“帮扶组”的概率为![]()
|
17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.
“function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.
莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.
当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.
随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.
综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.
你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?
1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?
2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com