22. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空题:本大题共4个小题,每小题4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

20090203

17.(本小题满分12分)

    解:(I)共线

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小题满分12分)

解:根据题意得图02,其中BC=31千米,BD=20千米,CD=21千米

∠CAB=60˚.设∠ACD = α ,∠CDB = β .

.……9分

在△ACD中,由正弦定理得:

19.(本小题满分12分)

解:(1)连结OP,∵Q为切点,PQOQ,

由勾股定理有,

又由已知

即: 

化简得 …………3分

   (2)由,得

…………6分

故当时,线段PQ长取最小值 …………7分

   (3)设⊙P的半径为R,∵⊙P与⊙O有公共点,⊙O的半径为1,

即R且R

故当时,,此时b=―2a+3=

得半径最最小值时⊙P的方程为…………12分

20.(本小题满分12分)

解:(I)过G作GM//CD交CC1于M,交D1C于O。

∵G为DD1的中点,∴O为D1C的中点

从而GO

故四边形GFBO为平行四边形…………3分

∴GF//BO

又GF平面BCD1,BO平面BCD1

∴GF//平面BCD1。 …………5分

   (II)过A作AH⊥DE于H,

过H作HN⊥EC于N,连结AN。

∵DC⊥平面ADD1A1,∴CD⊥AH。

又∵AH⊥DE,∴AH⊥平面ECD。

∴AH⊥EC。 …………7分

又HN⊥EC

∴EC⊥平面AHN。

故AN⊥∴∠ANH为二面角A―CE―D的平面角 …………9分

在Rt△EAD中,∵AD=AE=1,∴AH=

在Rt△EAC中,∵EA=1,AC=

  …………12分

21.(本小题满分12分)

解:(I)

 

   (II)

   (III)令上是增函数

22.(本小题满分12分)

解:(I)

单调递增。 …………2分

,不等式无解;

所以  …………5分

   (II), …………6分

                         …………8分

因为对一切……10分

   (III)问题等价于证明

由(1)可知

                                                   …………12分

易得

当且仅当成立。

                                                 …………14分