④若其中正确命题的个数是 A.1 B.2 C.3 D.4 查看更多

 

题目列表(包括答案和解析)

给出下列命题,其中正确命题的个数是(  )
①已知a,b,m都是正数,
a+m
b+m
a
b
,则a<b;
②已知a>1,若ax>ay>1,则xa>ya
③|x|≤1,且|y|≤1”是“|x+y|≤2”的充分不必要条件;
④命题“?x∈R,使得x2-2x+1<0”的否定是“?x∈R,使得x2-2x+1≥0”.

查看答案和解析>>

下列命题中,其中正确命题的个数为( )
(1)PA⊥矩形ABCD所在平面,则P,B两点间的距离等于P到BC的距离;
(2)若a∥b,a?α,b?α,则a与b的距离等于a与α的距离;
(3)直线a,b是异面直线,a?α,b∥α则a,b之间的距离等于b与α之间的距离;
(4)直线a,b是异面直线,a?α,b?β,且α∥β,则a,b之间的距离等于α与β之间的距离.
A.一个
B.二个
C.三个
D.四个

查看答案和解析>>

下列命题中,其中正确命题的个数为(  )
(1)PA⊥矩形ABCD所在平面,则P,B两点间的距离等于P到BC的距离;
(2)若a∥b,a?α,b?α,则a与b的距离等于a与α的距离;
(3)直线a,b是异面直线,a?α,b∥α则a,b之间的距离等于b与α之间的距离;
(4)直线a,b是异面直线,a?α,b?β,且α∥β,则a,b之间的距离等于α与β之间的距离.

查看答案和解析>>

给出下列命题,其中正确命题的个数为(     )

①在区间上,函数中有三个是增函数;

②命题.则,使

③若函数是偶函数,则的图象关于直线对称;

④已知函数则方程个实数根.

A.           B.          C.           D.

 

查看答案和解析>>

给出下列命题,其中正确命题的个数为(    )
①在区间上,函数中有三个是增函数;
②命题.则,使
③若函数是偶函数,则的图象关于直线对称;
④已知函数则方程个实数根.

A. B. C. D.

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

ABBD    DBBA    BCBA

二、填空题:本大题共4小题,每小题4分,共16分。

13.2    14.3    15.    16.①③

三、解答题:本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。

17.解:(I)………2分

    依题意函数

    所以 …………4分

   

   (II)

   

18.解:(I)由题意得:上年度的利润的万元;

    本年度每辆车的投入成本为万元;

    本年度每辆车的出厂价为万元;

    本年度年销售量为 ………………2分

    因此本年度的利润为

   

   (II)本年度的利润为

   

………………7分

(舍去)。  …………9分

19.(I)解:取CE中点P,连结FP、BP,

∵F为CD的中点,

∴FP//DE,且FP=…………2分

又AB//DE,且AB=

∴AB//FP,且AB=FP,

∴ABPF为平行四边形,∴AF//BP。…………4分

又∵AF平面BCE,BP平面BCE,

∴AF//平面BCE。 …………6分

   (II)∵△ACD为正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D, …………9分

∴AF⊥平面CDE。

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………12分

20.解:(I)由题意知

   (II)

          

的最小值为10。 …………12分

21.解:(I)…………1分

   (II)

由条件得 …………3分

  …………4分

   (III)由(II)知

①当时,

②当时,

③当时,

综上所述:当单调减区间为单调增区间为

 …………12分

22.解:(I)设椭圆的方程为

…………4分

   (II)

…………6分

交椭圆于A,B两点,

  …………8分

   (3)设直线MA、MB的斜率分别为k1,k2,则问题只需证明

、MB与x轴围成一个等腰三角形。 …………14分