的值 A.恒小于0 B.恒大于0 C.可能为0 D.可正可负 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

如图所示,椭圆C:的一个焦点为 F(1,0),且过点

(1)求椭圆C的方程;

(2)已知A、B为椭圆上的点,且直线AB垂直于轴,  

直线=4与轴交于点N,直线AF与BN交

于点M。

(ⅰ)求证:点M恒在椭圆C上;

(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

(本小题满分13分)

如图所示,椭圆C:的一个焦点为 F(1,0),且过点

(1)求椭圆C的方程;

(2)已知A、B为椭圆上的点,且直线AB垂直于轴,  

直线=4与轴交于点N,直线AF与BN交

于点M。

(ⅰ)求证:点M恒在椭圆C上;

(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

定义在R上的函数满足单调递增,如果的值(    )

A.恒小于0          B.恒大于零         C.可能为零         D.非负数

 

查看答案和解析>>

已知定义域为R的函数满足,当时,单调递增.若,则的值(    )

 A.恒小于0     B.恒大于0      C.可能为0      D.可正可负

 

查看答案和解析>>

已知定义域为R的函数满足,当时,单调递增.若,则的值(   )  

A.恒小于0 B.恒大于0 C.可能为0 D.可正可负

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

ABBD    DBBA    BCBA

二、填空题:本大题共4小题,每小题4分,共16分。

13.2    14.3    15.    16.①③

三、解答题:本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。

17.解:(I)………2分

    依题意函数

    所以 …………4分

   

   (II)

   

18.解:(I)由题意得:上年度的利润的万元;

    本年度每辆车的投入成本为万元;

    本年度每辆车的出厂价为万元;

    本年度年销售量为 ………………2分

    因此本年度的利润为

   

   (II)本年度的利润为

   

………………7分

(舍去)。  …………9分

19.(I)解:取CE中点P,连结FP、BP,

∵F为CD的中点,

∴FP//DE,且FP=…………2分

又AB//DE,且AB=

∴AB//FP,且AB=FP,

∴ABPF为平行四边形,∴AF//BP。…………4分

又∵AF平面BCE,BP平面BCE,

∴AF//平面BCE。 …………6分

   (II)∵△ACD为正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D, …………9分

∴AF⊥平面CDE。

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………12分

20.解:(I)由题意知

   (II)

          

的最小值为10。 …………12分

21.解:(I)…………1分

   (II)

由条件得 …………3分

  …………4分

   (III)由(II)知

①当时,

②当时,

③当时,

综上所述:当单调减区间为单调增区间为

 …………12分

22.解:(I)设椭圆的方程为

…………4分

   (II)

…………6分

交椭圆于A,B两点,

  …………8分

   (3)设直线MA、MB的斜率分别为k1,k2,则问题只需证明

、MB与x轴围成一个等腰三角形。 …………14分