(II)若函数处的切线斜率为―3.求此切线方程, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知函数。  (I)求函数的单调区间; (II)函数的图象的在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围。

查看答案和解析>>

已知函数f(x)=-x3+ax2+b(a,b∈R).
(I)当a>0时,求函数y=f(x)的极值;
(II)若函数y=f(x)的图象上任意不同的两点连线的斜率都小于2,求证:-
6
<a<
6

(III)对任意x0∈[0,1],y=f(x)的图象在x=x0处的切线的斜率为k,求证:1≤a≤
3
是|k|≤1成立的充要条件.

查看答案和解析>>

已知函数f(x)=-x3+ax2+b(a,b∈R).
(I)当a>0时,求函数y=f(x)的极值;
(II)若函数y=f(x)的图象上任意不同的两点连线的斜率都小于2,求证:-
6
<a<
6

(III)对任意x0∈[0,1],y=f(x)的图象在x=x0处的切线的斜率为k,求证:1≤a≤
3
是|k|≤1成立的充要条件.

查看答案和解析>>

已知函数f(x)=ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且x=
2
3
时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n0,使得|f′(n0)|≤
3
4
?说明理由.

查看答案和解析>>

已知函数f(x)=+ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n,使得?说明理由.

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

ABBD    DBBA    BCBA

二、填空题:本大题共4小题,每小题4分,共16分。

13.2    14.3    15.    16.①③

三、解答题:本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。

17.解:(I)………2分

    依题意函数

    所以 …………4分

   

   (II)

   

18.解:(I)由题意得:上年度的利润的万元;

    本年度每辆车的投入成本为万元;

    本年度每辆车的出厂价为万元;

    本年度年销售量为 ………………2分

    因此本年度的利润为

   

   (II)本年度的利润为

   

………………7分

(舍去)。  …………9分

19.(I)解:取CE中点P,连结FP、BP,

∵F为CD的中点,

∴FP//DE,且FP=…………2分

又AB//DE,且AB=

∴AB//FP,且AB=FP,

∴ABPF为平行四边形,∴AF//BP。…………4分

又∵AF平面BCE,BP平面BCE,

∴AF//平面BCE。 …………6分

   (II)∵△ACD为正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D, …………9分

∴AF⊥平面CDE。

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………12分

20.解:(I)由题意知

   (II)

          

的最小值为10。 …………12分

21.解:(I)…………1分

   (II)

由条件得 …………3分

  …………4分

   (III)由(II)知

①当时,

②当时,

③当时,

综上所述:当单调减区间为单调增区间为

 …………12分

22.解:(I)设椭圆的方程为

…………4分

   (II)

…………6分

交椭圆于A,B两点,

  …………8分

   (3)设直线MA、MB的斜率分别为k1,k2,则问题只需证明

、MB与x轴围成一个等腰三角形。 …………14分